37 resultados para Pesticides – organochlorine
Resumo:
A range of organohalogen compounds (10 polychlorinated biphenyl [PCB] congeners, DDT and metabolites, chlordane-related compounds, the potential natural organochlorine compound Q1, toxaphene, hexachlorobenzene, hexachlorocyclohexanes, dieldrin, and several yet unidentified brominated compounds) were detected in the blubber of four bottlenose dolphins (Tursiops truncatus), one common dolphin (Delphinus delphis), and seven dugongs (Dugong dugon), as well as in adipose tissue of a green turtle (Chelonia mydas) and a python (Morelia spilota) from northeast Queensland (Australia). The green turtle and dugongs accumulated lower organohalogen levels than the dolphins. Lower levels in dugongs were expected because this species is exclusively herbivorous. Highest PCB and DDT levels recorded in dugongs were 209 and 173 mug/kg lipids, respectively. Levels of the nonanthropogenic heptachlorinated compound Q1 (highest level in dugongs was 160 mug/kg lipids) were estimated using the ECD response factor of trans-nonachlor. Highest organohalogen levels were found in blubber of dolphins for sumDDT (575-52,500 mug/kg) and PCBs (600-25,500 mug/kg lipids). Furthermore, Q1 was a major organohalogen detected in all samples analyzed, ranging from 450 -9,100 mug/kg lipids. The highest concentration of Q1 determined in this study represents the highest concentration reported to date in an environmental sample. Levels of chlordane-related compounds were also high (280-7,700 mug/kg, mainly derived from trans-nonachlor), but concentrations of hexachlorobenzene, hexachlorocyclohexanes, dieldrin, and toxaphene were relatively low and contributed little to the overall organohalogen contamination. Furthermore, a series of three major (BC-1, BC-2, and BC-3) and six minor (BC-4 through BC-9) unknown brominated compounds were observable by extracting m/z 79 and m/z 81 from the GC/ECNI-MS full scan run. Structural proposals were made for the two major recalcitrant compounds (referred to as BC-1 and BC-2). BC-2 appears to be a tetrabromo-methoxy-diphenylether (512 u) and BC-1 has 14 u (corresponding with an additional CH2 group) more relative to BC-1. In general the organohalogen pattern observed in blubber of dolphins was different compared to similar samples from other locations in the world, which is apparent from the fact that the four major abundant signals in the GC/ECD chromatogram. of D. delphis originated from the four unknown compounds Q1, BC-1, BC-2, and BC-3.
Resumo:
Recent investigations have demonstrated the presence of an unidentified source of polychlorinated dibenzo-p-dioxins (PCDDs) in the coastal zone of Queensland (Australia). The present study provides new information on the possible PCDD sources and their temporal input to this environment. Two estuarine sediment cores were collected in northern Queensland for which radiochemical chronologies were established. Core sections from different depositional ages, up to three centuries, have been analyzed for 2,3,7,8-substituted PCDDs and polychlorinated dibenzofurans (PCDFs). Variations of PCDD concentrations in the sediment cores over several centuries of depositional history were relatively small, and elevated PCDD levels were still present in sediment slices from the early 17th century. PCDD/F isomer patterns and congener profiles in sediments deposited during the last 350 years were almost identical and correlated well to the characteristic profiles observed in surface sediments and soils from the entire Queensland coastline. Profiles were dominated by higher chlorinated PCDDs, in particular octachlorodibenzodioxin (OCDD), whereas PCDF concentrations were below or near the limit of detection. These results indicate the presence of a PCDD source prior to industrialization and production of commercial organochlorine products. Further, the present study demonstrates that PCDD input patterns have been similar along an extensive but localized area over at least several centuries, contributing relatively high concentrations of PCDDs to the coastal system of Queensland.
Resumo:
The cattle tick, Boophilus microplus, is a major pest of cattle in Australia, Central and South America, and parts of Africa and Asia. Control of ticks with organophosphates (OPs) and carbamates, which target acetylcholinesterases (AChE), led to evolution of resistance to these pesticides. Alleles at the locus studied here, AChE2, from OP-susceptible female ticks from Australia and Mexico differed at 46 of 1689 nucleotide positions (20 putative amino acid differences) whereas alleles from three strains of OP-resistant ticks from Australia differed with the allele from the Australian susceptible ticks at six to 13 nucleotide positions (three to six putative amino acid differences). However, the role, if any, of these polymorphisms in the OP-resistance phenotype is unknown. Certainly none of the polymorphisms correspond to sites in ACK that are involved in catalysis or binding of acetylcholine in other organisms. Both of the AChE loci of B. microplus, AChE1 and AChE2, are apparently expressed in synganglia; AChE1 is also expressed in salivary glands and ovaries, in OP-susceptible and OP-resistant ticks. This seems to contradict studies of enzyme kinetics, which indicated that only one form of AChE was present in the synganglia, the site of the action of OPs, in this species of tick. (C) 2002 Elsevier Science Ltd. All rights reserved.
Resumo:
Laboratory toxicity studies were conducted in southeastern Queensland, Australia, to determine the acute lethal effects of a 1-h pulse exposure of selected insecticides to adult and juvenile (
Resumo:
Objective: It has been suggested that parental occupation, particularly farming, increased the risk of Ewing's sarcoma in the offspring. In a national case-control study we examined the relationship between farm and other parental occupational exposures and the risk of cancer in the offspring. Methods: Cases were 106 persons with confirmed Ewing's sarcoma or peripheral primitive neuroectodermal tumor. Population-based controls (344) were selected randomly via telephone. Information was collected by interview (84% face-to-face). Results: We found an excess of case mothers who worked on farms at conception and/or pregnancy (odds ratio (OR) = 2.3, 95% confidence interval (CI) 0.5-12.0) and a slightly smaller excess of farming fathers; more case mothers usually worked as laborers, machine operators, or drivers (OR = 1.8, 95% CI 0.9-3.9). Risk doubled for those whose mothers handled pesticides and insecticides, or fathers who handled solvents and glues, and oils and greases. Further, more cases lived on farms (OR = 1.6, 95% CI 0.9-2.8). In the 0-20 years group, the risk doubled for those who ever lived on a farm (OR = 2.0, 95% CI 1.0-3.9), and more than tripled for those with farming fathers at conception and/or pregnancy (OR = 3.5, 95% CI 1.0-11.9). Conclusions: Our data support the general hypothesis of an association of Ewing's sarcoma family of tumors with farming, particularly at younger ages, who represent the bulk of cases, and are more likely to share etiologic factors.
Resumo:
The effect of the solid and dissolved organic matter fractions, mineral composition and ionic strength of the soil solution on the sorption behaviour of pesticides were studied. A number of soils, chosen so as to have different clay mineral and organic carbon content, were used to study the sorption of the pesticides atrazine (6-chloro-N-2-ethyl-N-4-isopropyl-1,3,5-triazine-2,4-diamine), 2,4-D ((2,4-dichlorophenoxy) acetic acid), isoproturon (3-(4-isopropylphenyl)1,1-dimethylurea) and paraquat (1,1'-dimethyl-4,4'-bipyridinium) in the presence of low and high levels of dissolved organic carbon and different background electrolytes. The sorption behaviour of atrazine, isoproturon and paraquat was dominated by the solid state soil components and the presence of dissolved organic matter had little effect. The sorption of 2,4-D was slightly affected by the soluble organic matter in the soil. However, this effect may be due to competition for adsorption sites between the pesticide and the soluble organic matter rather than due to a positive interaction between the pesticide and the soluble fraction of soil organic matter. It is concluded that the major factor governing the sorption of these pesticides is the solid state organic fraction with the clay mineral content also making a significant contribution. The dissolved organic carbon fraction of the total organic carbon in the soil and the ionic strength of the soil solution appear to have little or no effect on the sorption/transport characteristics of these pesticides over the range of concentrations studied. (C) 2002 Elsevier Science B.V. All rights reserved.