58 resultados para Peroxisome proliferator-activated receptor


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Metabolism, in part, is regulated by the peroxisome proliferator-activated receptors (PPARs). The PPARs act as nutritional lipid sensors and three mammalian PPAR subtypes designated PPARalpha (NR1C1), PPARgamma (NR1C3) and PPARdelta (NR1C2) have been identified. This subgroup of nuclear hormone receptors binds DNA and controls gene expression at the nexus of pathways that regulate lipid and glucose homeostasis, energy storage and expenditure in an organ-specific manner. Recent evidence has demonstrated activation of PPARdelta in the major mass peripheral tissue (ie, adipose and skeletal muscle). It enhances glucose tolerance, insulin-stimulated glucose disposal, lipid catabolism, energy expenditure, cholesterol efflux and oxygen consumption. These effects positively influence the blood-lipid profile. Furthermore, PPARdelta activation produces a predominant type I/slow twitch/oxidative muscle fiber phenotype that leads to increased endurance, insulin sensitivity and resistance to obesity. PPARdelta has rapidly emerged as a potential target in the battle against dyslipidemia, insulin insensitivity, type II diabetes and obesity, with therapeutic efficacy in the treatment of cardiovascular disease risk factors. GW-501516 is currently undergoing phase II safety and efficacy trials in human volunteers for the treatment of dyslipidemia. The outcome of these clinical trials are eagerly awaited against a background of conflicting reports about cancer risks in genetically predisposed animal models. This review focuses on the potential pharmacological utility of selective PPARdelta agonists in the context of risk factors associated with metabolic and cardiovascular disease.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Orphan nuclear receptors: therapeutic opportunities in skeletal muscle. Am J Physiol Cell Physiol 291: C203-C217, 2006; doi: 10.1152/ajpcell. 00476.2005.-Nuclear hormone receptors (NRs) are ligand-dependent transcription factors that bind DNA and translate physiological signals into gene regulation. The therapeutic utility of NRs is underscored by the diversity of drugs created to manage dysfunctional hormone signaling in the context of reproductive biology, inflammation, dermatology, cancer, and metabolic disease. For example, drugs that target nuclear receptors generate over $10 billion in annual sales. Almost two decades ago, gene products were identified that belonged to the NR superfamily on the basis of DNA and protein sequence identity. However, the endogenous and synthetic small molecules that modulate their action were not known, and they were denoted orphan NRs. Many of the remaining orphan NRs are highly enriched in energy-demanding major mass tissues, including skeletal muscle, brown and white adipose, brain, liver, and kidney. This review focuses on recently adopted and orphan NR function in skeletal muscle, a tissue that accounts for similar to 35% of the total body mass and energy expenditure, and is a major site of fatty acid and glucose utilization. Moreover, this lean tissue is involved in cholesterol efflux and secretes that control energy expenditure and adiposity. Consequently, muscle has a significant role in insulin sensitivity, the blood lipid profile, and energy balance. Accordingly, skeletal muscle plays a considerable role in the progression of dyslipidemia, diabetes, and obesity. These are risk factors for cardiovascular disease, which is the the foremost cause of global mortality (> 16.7 million deaths in 2003). Therefore, it is not surprising that orphan NRs and skeletal muscle are emerging as therapeutic candidates in the battle against dyslipidemia, diabetes, obesity, and cardiovascular disease.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The mammalian long-chain acyl-CoA thioesterase, the enzyme that catalyses the hydrolysis of acyl-CoAs to free fatty acids, contains two fused 4HBT (4-hydroxybenzoyl-CoA thioesterase) motifs. The C-terminal domain of the mouse long-chain acyl-CoA thioesterase (Acot7) has been expressed in bacteria and crystallized. The crystals were obtained by vapour diffusion using PEG 2000 MME as precipitant at pH 7.0 and 290 K. The crystals have the symmetry of space group R32 ( unit-cell parameters a = b = 136.83, c = 99.82 angstrom, gamma = 120 degrees). Two molecules are expected in the asymmetric unit. The crystals diffract to 2.4 angstrom resolution using the laboratory X-ray source and are suitable for crystal structure determination.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Objective:. There is evidence from in vitro studies that fatty acids can inhibit glucose uptake in liver. However, it is uncertain whether this happens in vivo when the liver is exposed to high levels of glucose and insulin, in combination with fatty acids, after a mixed meal. This study determined the effects of a combination of fatty acids and insulin on glucokinase (GK) activity and glycolysis in primary rat hepatocytes. Methods: Hepatocytes were cultured with 15 mM glucose and 2 or 10 nM insulin in combination with the fatty acids palmitate, oleate, linoleate, eicosapentaenoic acid, or docosahexaenoic acid. Total GK activity and the proportion of GK in the,active, unbound state were measured to determine the effect of fatty acid on the activity and cellular localization of GK. Glucose phosphorylation and glycolysis were measured in intact cells. Lactate and pyruvate synthesis and the accumulation of ketone bodies were also estimated. Results: Palmitate and eicosapentaenoic acid lowered total GK activity in the presence of 2 nM insulin, but not with 10 nM insulin. In contrast, oleate, linoleate, and docosahexaenoic acid did not alter GK activity. None of the fatty acids tested inhibited glucose phosphorylation or glycolysis in intact rat hepatocytes. In addition, GK activity was unaffected by insulin concentration. Conclusion: Some fatty acids can act to inhibit GK activity in primary hepatocytes. However, there was no,evidence that this decrease in GK activity impaired glucose phosphorylation or glycolysis. Glucose and high concentrations of insulin, which promote glucose uptake, appear to counteract any inhibitory action of fatty acids. Therefore, the presence of fatty acids in a normal mixed meal is likely to have little effect on the capacity of the liver to take up, phosphorylate, and oxidize glucose. (C) 2006 Elsevier Inc. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Lysosomal acid lipase (LAL) hydrolyzes cholesteryl esters and triglycerides to generate free fatty acids and cholesterol in the cell. The downstream metabolites of these compounds serve as hormonal ligands for nuclear receptors and transcription factors. Genetic ablation of the lal gene in the mouse caused malformation of macrophages and inflammation-triggered multiple pathogenic phenotypes in multiple organs. To assess the relationship between macro phages and lal(-/-) pathogenic phenotypes, a macrophage-specific doxycycline-inducible transgenic system was generated to induce human LAL (hLAL) expression in the lal(-/-) genetic background under control of the 7.2-kb c-fins promoter/intron2 regulatory sequence. Doxycycline-induced hLAL expression in macrophages significantly ameliorated aberrant gene expression, inflammatory cell (neutrophil) influx, and pathogenesis in multiple organs. These studies strongly support that neutral lipid metabolism in macrophages contributes to organ inflammation and pathogenesis.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

1. The growth hormone (GH) receptor was the first of the class 1 cytokine receptors to be cloned. It shares a number of structural characteristics with other family members and common signalling mechanisms based on common usage of the Janus kinase 2 (JAK2). 2. Growth hormone receptor activation is initiated by GH-induced homodimerization of receptor molecules. This has enabled the creation of specific hormone antagonists that block receptor dimerization. 3. The details of the transcription factors used by the activated receptor are being revealed as a result of promoter analyses and electrophoretic mobility gelshift analysis. 4. Growth hormone receptors are widespread and their discovery in certain tissues has led to the assignment of new physiological roles for GH, Some of these involve local or paracrine roles for GH, as befits its cytokine status. 5. Four examples of such novel roles are discussed, These are: (i) the brain GH axis; (ii) GH and the vitamin B-12 axis; (iii) GH in early pre-implantation development; and (iv) GH in development of the tooth. 6. We propose that the view that GH acts through the intermediacy of insulin-like growth factor-1 is simplistic; rather, GH acts to induce an array of growth factors and their receptors and the composition of this array varies with tissue type and, probably, stage of development.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

We evaluated the effects of Ala-7-conantokin-G (Con-G(A7)) and ifenprodil on the modulation by spermine of [H-3]MK801 binding to human cortical membranes. Human cortical tissue was obtained at autopsy and stored at -80 degreesC until assay. Both Con-GA7 and ifenprodil inhibited [H-3]MK801 binding, but spermine affected these inhibitions differently. Con-G(A7) IC50 changed little with spermine concentration, indicative of a non-competitive interaction, whereas the rightward shift in ifenprodil IC50 with increasing spermine concentration suggested partial competition. When the two agents were tested against the biphasic activation of [H-3]MK801 binding by spermine, they again differed in their effects. In the activation phase Con-G(A7) was a non-competitive inhibitor of spermine activation, and may even enhance the spermine EC50, while the ifenprodil data indicated a partially competitive interaction. Both agents were non-competitive in the inhibitory phase. Overall, the data suggest that Con-G(A7) and ifenprodil interact differently with the polyamine modulation of the glutamate-N-methyl-D-aspartate receptor. (C) 2004 IBRO. Published by Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The interactions between Eph receptor tyrosine kinases and their ephrin ligands regulate cell migration and axon pathfinding. The EphA receptors are generally thought to become activated by ephrin-A ligands, whereas the EphB receptors interact with ephrin-B ligands. Here we show that two of the most widely studied of these molecules, EphB2 and ephrin-A5, which have never been described to interact with each other, do in fact bind one another with high affinity. Exposure of EphB2-expressing cells to ephrin-A5 leads to receptor clustering, autophosphorylation and initiation of downstream signaling. Ephrin-A5 induces EphB2-mediated growth cone collapse and neurite retraction in a model system. We further show, using X-ray crystallography, that the ephrin-A5-EphB2 complex is a heterodimer and is architecturally distinct from the tetrameric EphB2-ephrin-B2 structure. The structural data reveal the molecular basis for EphB2-ephrin-A5 signaling and provide a framework for understanding the complexities of functional interactions and crosstalk between A- and B-subclass Eph receptors and ephrins.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The addition of insulin during in vitro culture has beneficial effects on rabbit preimplantation embryos leading to increased cell proliferation and reduced apoptosis. We have previously described the expression of the insulin receptor (IR) and the insulin-responsive glucose transporters (GLUT) 4 and 8 in rabbit preimplantation embryos. However, the effects of insulin on IR signaling and glucose metabolism have not been investigated in rabbit embryos. In the present study, the effects of 170 nM insulin on IR, GLUT4 and GLUT8 mRNA levels, Akt and Erk phosphorylation, GLUT4 translocation and methyl glucose transport were studied in cultured day 3 to day 6 rabbit embryos. Insulin stimulated phosphorylation of the mitogen-activated protein kinase (MAPK) Erk1/2 and levels of IR and GLUT4 mRNA, but not phosphorylation of the phosphatidylinositol 3-kinase-dependent protein kinase, Akt, GLUT8 mRNA levels, glucose uptake or GLUT4 translocation. Activation of the MAPK signaling pathway in the absence of GLUT4 translocation and of a glucose transport response suggest that in the rabbit preimplantation embryo insulin is acting as a growth factor rather than a component of glucose homeostatic control.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The role of p75 neurotrophin receptor (p75(NTR)) in mediating cell death is now well charaterized, however, it is only recently that details of the death signaling pathway have become clearer. This review focuses on the importance of the juxtamembrane Chopper domain region of p75(NTR) in this process. Evidence supporting the involvement of K+ efflux, the apoptosome (caspase-9, apoptosis activating factor-1, APAF-1, and Bcl-(xL)), caspase-3, c-jun kinase, and p53 in the p75(NTR) cell death pathway is discussed and regulatory roles for the p75(NTR) ectodomain and death domain are proposed. The role of synaptic activity is also discussed, in particular the importance of neutrotransmitter-activated K+ channels acting as the gatekeepers of cell survival decisions during development and in neurodegenerative conditions.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In the ionotropic glutamate receptor, the global conformational changes induced by partial agonists are smaller than those induced by full agonists. However, in the pentameric ligand-gated ion channel receptor family, the structural basis of partial agonism is not understood. This study investigated whether full and partial agonists induce different conformation changes in the glycine receptor chloride channel ( GlyR). A substituted cysteine accessibility analysis demonstrated previously that glycine binding induced an increase in surface accessibility of all residues from Arg(271) to Lys(276) in the M2-M3 domain of the homomeric alpha1 GlyR. Here we compare the surface accessibility changes induced by the full agonist, glycine, and the partial agonist, taurine. In GlyRs incorporating the A272C, S273C, L274C, or P275C mutation, the reaction rate of the cysteine-specific compound, methanethiosulfonate ethyltrimethylammonium, depended on how strongly the receptors were activated but was agonist-independent. Reaction rates could not be compared in the R271C and K276C mutant GlyRs because methanethiosulfonate ethyltrimethylammonium did not modify the extremely small currents induced by saturating taurine or equivalent low glycine concentrations. The results indicate that bound taurine and glycine molecules impose identical conformational changes to the M2-M3 domain. We therefore conclude that the higher efficacy of glycine is due to an increased ability to stabilize a common activated configuration.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Growth hormone is believed to activate the growth hormone receptor (GHR) by dimerizing two identical receptor subunits, leading to activation of JAK2 kinase associated with the cytoplasmic domain. However, we have reported previously that dimerization alone is insufficient to activate full-length GHR. By comparing the crystal structure of the liganded and unliganded human GHR extracellular domain, we show here that there is no substantial change in its conformation on ligand binding. However, the receptor can be activated by rotation without ligand by inserting a defined number of alanine residues within the transmembrane domain. Fluorescence resonance energy transfer ( FRET), bioluminescence resonance energy transfer (BRET) and coimmunoprecipitation studies suggest that receptor subunits undergo specific transmembrane interactions independent of hormone binding. We propose an activation mechanism involving a relative rotation of subunits within a dimeric receptor as a result of asymmetric placement of the receptor-binding sites on the ligand.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Background. Serum glucocorticoid regulated kinase (SGK-1) is induced in the kidney in diabetes mellitus. However, its role in the proximal tubule is unclear. This study determined the expression and functional role of SGK-1 in PTCs in high glucose conditions. As the epidermal growth factor (EGF) receptor is activated by both EGF and other factors implicated in diabetic nephropathy, the relationship of SGK-1 with EGFR activity was assessed. Methods. mRNA and protein expression of SGK-1 and mRNA expression of the sodium hydrogen exchanger NHE3 were measured in human PTCs exposed to 5 mmol/L (control) and 25 mmol/L (high) glucose. The effects of SGK-1 on cell growth, apoptosis, and progression through the cell cycle and NHE3 mRNA were examined following overexpression of SGK-1 in PTCs. The role of EGFR activation in observed changes was assessed by phospho-EGFR expression, and response to the EGFR blocker PKI166. SGK-1 expression was then assessed in vivo in a model of streptozotocin-induced diabetes mellitus type 2. Results. A total of 25 mmol/L glucose and EGF (10 ng/mL) increased SGK-1 mRNA (P < 0.005 and P < 0.002, respectively) and protein (both P < 0.02) expression. High glucose and overexpression of SGK-1 increased NHE3 mRNA (P < 0.05) and EGFR phosphorylation (P < 0.01), which were reversed by PKI166. SGK-1 overexpression increased PTC growth (P < 0.0001), progression through the cell cycle (P < 0.001), and increased NHE3 mRNA (P < 0.01), which were all reversed with PKI166. Overexpression of SGK-1 also protected against apoptosis induced in the PTCs (P < 0.0001). Up-regulation of tubular SGK-1 mRNA in diabetes mellitus was confirmed in vivo. Oral treatment with PKI166 attenuated this increase by 51%. No EGF protein was detectable in PTCs, suggestive of phosphorylation of the EGFR by high glucose and downstream induction of SGK-1. Conclusion. The effects of high glucose on PTC proliferation, reduced apoptosis and increased NHE3 mRNA levels are mediated by EGFR-dependent up-regulation of SGK-1.