92 resultados para Perforated plate
Resumo:
The Fornax Spectroscopic Survey will use the Two degree Field spectrograph (2dF) of the Angle-Australian Telescope to obtain spectra for a complete sample of all 14000 objects with 16.5 less than or equal to b(j) less than or equal to 19.7 in a 12 square degree area centred on the Fornax Cluster. The aims of this project include the study of dwarf galaxies in the cluster (both known low surface brightness objects and putative normal surface brightness dwarfs) and a comparison sample of background field galaxies. We will also measure quasars and other active galaxies, any previously unrecognised compact galaxies and a large sample of Galactic stars. By selecting all objects-both stars and galaxies-independent of morphology, we cover a much larger range of surface brightness and scale size than previous surveys. In this paper we first describe the design of the survey. Our targets are selected from UK Schmidt Telescope sky survey plates digitised by the Automated Plate Measuring (APM) facility. We then describe the photometric and astrometric calibration of these data and show that the APM astrometry is accurate enough for use with the 2dF. We also describe a general approach to object identification using cross-correlations which allows us to identify and classify both stellar and galaxy spectra. We present results from the first 2dF field. Redshift distributions and velocity structures are shown for all observed objects in the direction of Fornax, including Galactic stars? galaxies in and around the Fornax Cluster, and for the background galaxy population. The velocity data for the stars show the contributions from the different Galactic components, plus a small tail to high velocities. We find no galaxies in the foreground to the cluster in our 2dF field. The Fornax Cluster is clearly defined kinematically. The mean velocity from the 26 cluster members having reliable redshifts is 1560 +/- 80 km s(-1). They show a velocity dispersion of 380 +/- 50 km s(-1). Large-scale structure can be traced behind the cluster to a redshift beyond z = 0.3. Background compact galaxies and low surface brightness galaxies are found to follow the general galaxy distribution.
Resumo:
With the advent of multi-fibre spectrographs such as the 'Two-Degree Field' (2dF) instrument at the Angle-Australian Telescope, quasar surveys that are free of any preselection of candidates and any biases this implies have become possible for the first time. The first of these is that which is being undertaken as part of the Fornax Spectroscopic Survey, a survey of the area around the Fornax Cluster of galaxies, and aims to obtain the spectra of all objects in the magnitude range 16.5 < b(j) < 19.7. To date, 3679 objects in the central pi -deg(2) area have been successfully identified from their spectral characteristics. Of these, 71 are found to be quasars, 61 with redshifts 0.3 < z < 2.2 and 10 with redshifts z > 2.2. Using this complete quasar sample, a new determination of quasar number counts is made, enabling an independent check of existing quasars surveys. Cumulative counts per square degree at a magnitude limit of b(j) < 19.5 are found to be 11.5 +/- 2.2 for 0.3 < z < 2.2, 2.22 +/- 0.93 for z > 2.2 and 13.7 +/- 3.1 for z > 0.3. Given the likely detection of extra quasars in the Fornax survey, we make a more detailed examination of existing quasar selection techniques. First, looking at the use of a stellar criterion, four of the 71 quasars are 'non-stellar' on the basis of the automated plate measuring facility (APM) b(j) classification, however inspection shows all are consistent with stellar, but misclassified due to image confusion. Examining the ultraviolet excess and multicolour selection techniques, for the selection criteria investigated, ultraviolet excess would find 69 +/- 6 per cent of our 0.3 < z < 2.2 quasars and only 50(-18)(+14), per cent of our z > 2.2 quasars, while the completeness level for multicolour selection is found to be 90(-4)(+3) per cent for 0.3 < z < 2.2 quasars and 80(-12)(+14) per cent for z > 2.2 quasars. The extra quasars detected by our all-object survey thus have unusually red star-like colours, and this appears to be a result of the continuum shape rather than any emission features. An intrinsic dust extinction model may, at least partly, account for the red colours.
Resumo:
The mechanism of growth of silicate films at the air/liquid interface has been investigated in situ by a series of grazing incidence diffraction experiments using a 20 x 25 cm(2) imaging plate as the detector. C(18)TAX (X = Br- or Cl-) has been used as the film templating surfactant. The formation of a layered phase, prior to growth of the hexagonal mesophase in C(18)TABr templated films. has been seen. This layered structure has a significantly shorter d spacing compared to the final hexagonal film (43 versus 48 Angstrom, respectively). The correlation lengths associated with the development of the hexagonal in-plane diffraction spots are much longer in-plane than perpendicular to the air/liquid interface (300 Angstrom versus 50 Angstrom). This implies that the film forms via the growth or aggregation of islands that are initially only a micelle or two thick. which then grow down into the solution.
Resumo:
We analyze folding phenomena in finely layered viscoelastic rock. Fine is meant in the sense that the thickness of each layer is considerably smaller than characteristic structural dimensions. For this purpose we derive constitutive relations and apply a computational simulation scheme (a finite-element based particle advection scheme; see MORESI et al., 2001) suitable for problems involving very large deformations of layered viscous and viscoelastic rocks. An algorithm for the time integration of the governing equations as well as details of the finite-element implementation is also given. We then consider buckling instabilities in a finite, rectangular domain. Embedded within this domain, parallel to the longer dimension we consider a stiff, layered plate. The domain is compressed along the layer axis by prescribing velocities along the sides. First, for the viscous limit we consider the response to a series of harmonic perturbations of the director orientation. The Fourier spectra of the initial folding velocity are compared for different viscosity ratios. Turning to the nonlinear regime we analyze viscoelastic folding histories up to 40% shortening. The effect of layering manifests itself in that appreciable buckling instabilities are obtained at much lower viscosity ratios (1:10) as is required for the buckling of isotropic plates (1:500). The wavelength induced by the initial harmonic perturbation of the director orientation seems to be persistent. In the section of the parameter space considered here elasticity seems to delay or inhibit the occurrence of a second, larger wavelength. Finally, in a linear instability analysis we undertake a brief excursion into the potential role of couple stresses on the folding process. The linear instability analysis also provides insight into the expected modes of deformation at the onset of instability, and the different regimes of behavior one might expect to observe.
Resumo:
A revised kinematic model for the motions of Africa and Iberia relative to Europe since the Middle Jurassic is presented in order to provide boundary conditions for Alpine-Mediterranean reconstructions. These motions were calculated using up-to-date kinematic data predominantly based on magnetic isochrons in the Atlantic Ocean and published by various authors during the last 15 years. It is shown that convergence of Africa with respect to Europe commenced during the Cretaceous Normal Superchron (CNS), between chrons MO and 34 (120-83 Ma). This motion was subjected to fluctuations in convergence rates characterised by two periods of relatively rapid convergence (during Late Cretaceous and Eocene-Oligocene times) that alternated with periods of slower convergence (during the Paleocene and since the Early Miocene). Distinct changes in plate kinematics are recognised in the motion of Iberia with respect to Europe, indicated by: (1) a Late Jurassic-Early Cretaceous left-lateral strike-slip motion; (2) Late Cretaceous convergence; (3) Paleocene quiescence; (4) a short period of right-lateral strike-slip motion; and (5) final Eocene-Oligocene convergence. Based on these results, it is speculated that a collisional episode in the Alpine orogeny at ca. 65 Ma resulted in a dramatic decrease in the relative plate motions and that a slower motion since the Early Miocene promoted extension in the Mediterranean back-arc basins. (C) 2002 Elsevier Science B.V. All rights reserved.
Resumo:
[1] The physical conditions required to provide for the tectonic stability of cratonic crust and for the relative longevity of deep cratonic lithosphere within a dynamic, convecting mantle are explored through a suite of numerical simulations. The simulations allow chemically distinct continents to reside within the upper thermal boundary layer of a thermally convecting mantle layer. A rheologic formulation, which models both brittle and ductile behavior, is incorporated to allow for plate-like behavior and the associated subduction of oceanic lithosphere. Several mechanisms that may stabilize cratons are considered. The two most often invoked mechanisms, chemical buoyancy and/or high viscosity of cratonic root material, are found to be relatively ineffective if cratons come into contact with subduction zones. High root viscosity can provide for stability and longevity but only within a thick root limit in which the thickness of chemically distinct, high-viscosity cratonic lithosphere exceeds the thickness of old oceanic lithosphere by at least a factor of 2. This end-member implies a very thick mechanical lithosphere for cratons. A high brittle yield stress for cratonic lithosphere as a whole, relative to oceanic lithosphere, is found to be an effective and robust means for providing stability and lithospheric longevity. This mode does not require exceedingly deep strength within cratons. A high yield stress for only the crustal or mantle component of the cratonic lithosphere is found to be less effective as detachment zones can then form at the crust-mantle interface which decreases the longevity potential of cratonic roots. The degree of yield stress variations between cratonic and oceanic lithosphere required for stability and longevity can be decreased if cratons are bordered by continental lithosphere that has a relatively low yield stress, i.e., mobile belts. Simulations that combine all the mechanisms can lead to crustal stability and deep root longevity for model cratons over several mantle overturn times, but the dominant stabilizing factor remains a relatively high brittle yield stress for cratonic lithosphere.
Resumo:
This paper presents kinematic analysis on the motion of Adria, which is the continental mass that bridges Africa and Europe in the central Mediterranean. Palaeomagnetic data show a general coherence between the motion of Adria and Africa since the Late Paleozoic. This mutual motion, for the period from 120 Ma and the present, is verified by comparing inferred palaeolatitudes from relatively stable parts of Adria (Apulia, Gargano, Istria, and the Southern Alps) and the Hyblean Plateau, with latitudinal changes that are calculated from the motion of Africa with respect to hotspots. Additional constraints on the motion of Adria are provided from the Late Paleozoic-Early Mesozoic passive margin of Adria in the Ionian Sea. The seismic structure of the floor of the Ionian Sea resembles the structure of the oceanic crust in marginal back-arc basins, suggesting that it formed as a small ocean basin. Furthermore, the Ionian lithosphere in the Calabrian arc has been subjected to rapid rollback, which commonly occurs only when the subducting slab is made of oceanic lithosphere. This oceanic domain marks the Pennian-Triassic to Jurassic plate boundary between Adria and Africa, suggesting that a small amount of independent motion between Adria and Africa took place at that time. Since the Jurassic, Adria and Africa have shared a relatively coherent motion path. (C) 2004 Lavoisier SAS. All rights reserved.
Resumo:
Despite extensive research in the last 150 years, the regional tectonic reconstruction of the Western Alps has remained controversial. The curved orogenic belt consists of several ribbon-like continental terranes (Sesia/Austroalpine, Internal Crystalline Massifs, Brianconnais), which are separated by two or more ophiolitic sutures (Piemonte, Valais, Antrona?, Lanzo/ Canavese?). High-pressure (HP) metamorphism of each terrane occurred during distinct orogenic episodes: at similar to65 Ma in the Sesia/Austroalpine, at similar to45 Ma in the Piemonte zone and at similar to35 Ma in the Internal Crystalline Massifs. It is suggested that these events reflect individual accretionary episodes, which together with kinematic indicators and the speed and direction of plate motions, provide constraints for the discussed reconstruction model. The model involves a prolonged orogenic history that took place during relative convergence of Europe and Adria (here considered as a promontory of the African plate). The first accretionary event involved the Sesia/Austroalpine terrane. Final closure of the Piemonte Ocean occurred during the Eocene (similar to45 Ma) and involved ultra-high-pressure (UHP) metamorphism of the Piemonte oceanic crust. Incorporation of the Brianconnais terrane in the accretionary wedge occurred thereafter, possibly during or after subduction of the Valais Ocean in the late Eocene (45-35 Ma). This subduction was terminated at ca. 35 Ma, when the Internal Crystalline Massifs (i.e. the assumed internal parts of the Brianconnais terrane) were buried into great depths and underwent HP and UHP metamorphism. (C) 2004 Elsevier B.V. All rights reserved.
Resumo:
Establishment of the left-right axis is a fundamental process of vertebrate embryogenesis. Failure to develop left-right asymmetry leads to incorrect positioning and morphogenesis of numerous internal organs, and is proposed to underlie the etiology of several common cardiac malformations. The transcriptional modulator Cited2 is essential for embryonic development: Cited2-null embryos die during gestation with profound developmental abnormalities, including cardiac malformations, exencephaly and adrenal agenesis. Cited2 is also required for normal establishment of the left-right axis; we demonstrate that abnormal heart looping and right atrial and pulmonary isomerism are consistent features of the left-right-patterning defect. We show by gene expression analysis that Cited2 acts upstream of Nodal, Lefty2 and Pitx2 in the lateral mesoderm, and of Lefty1 in the presumptive floor plate. Although abnormal left-right patterning has a major impact on the cardiac phenotype in Cited2-null embryos, laterality defects are only observed in a proportion of these embryos. We have therefore used a combination of high-resolution imaging and three-dimensional (3D) modeling to systematically document the full spectrum of Cited2-associated cardiac defects. Previous studies have focused on the role of Cited2 in cardiac neural crest cell development, as Cited2 can bind the transcription factor Tfap2, and thus affect the expression of Erbb3 in neural crest cells. However, we have identified Cited2-associated cardiac defects that cannot be explained by laterality or neural crest abnormalities. In particular, muscular ventricular septal defects and reduced cell density in the atrioventricular (AV) endocardial cushions are evident in Cited2-null embryos. As we found that Cited2 expression tightly correlated with these sites, we believe that Cited2 plays a direct role in development of the AV canal and cardiac septa. We therefore propose that, in addition to the previously described reduction of cardiac neural crest cells, two other distinct mechanisms contribute to the spectrum of complex cardiac defects in Cited2-null mice; disruption of normal left-right patterning and direct loss of Cited2 expression in cardiac tissues.
Resumo:
A large number of ore deposits that formed in the Peruvian Andes during the Miocene (15-5 Ma) are related to the subduction of the Nazea plate beneath the South American plate. Here we show that the spatial and temporal distribution of these deposits correspond with the arrival of relatively buoyant topographic anomalies, namely the Nazca Ridge in central Peru and the now-consumed Inca Plateau in northern Peru, at the subduction zone. Plate reconstruction shows a rapid metallogenic response to the arrival of the topographic anomalies at the subduction trench. This is indicated by clusters of ore deposits situated within the proximity of the laterally migrating zones of ridge subduction. It is accordingly suggested that tectonic changes associated with impingement of the aseismic ridge into the subduction zone may trigger the formation of ore deposits in metallogenically fertile suprasubduction environments. (c) 2005 Elsevier B.V All rights reserved.
Resumo:
Recent increasing applications for cast Al-Si alloys are particularly driven by the need for lightweighting components in the automotive sector. To improve mechanical properties, elements such as strontium, sodium and antimony can be added to modify the eutectic silicon from coarse and plate-like to fine and fibrous morphology. It is only recently being noticed that the morphological transformation resulting from eutectic modification is also accompanied by other, equally significant, but often unexpected changes. These changes can include a 10-fold increase in the eutectic grain size, redistribution of low-melting point phases and porosity as well as surface finish, consequently leading to variations in casting quality. This paper shows the state-of-the-art in understanding the mechanism of eutectic nucleation and growth in Al-Si alloys, inspecting samples, both quenched and uninterrupted, on the macro, micro and nano-scale. It shows that significant variations in eutectic nucleation and growth dynamics occur in AI-Si alloys as a function of the type and amount of modifier elements added. The key role of AIP particles in nucleating silicon is demonstrated. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
In this paper, experiments to detect turbulent spots in the transitional boundary layers, formed on a flat plate in a free-piston shock tunnel how, are reported. Experiments indicate that thin-film heat-transfer gauges are suitable for identifying turbulent-spot activity and can be used to identify parameters such as the convection rate of spots and the intermittency of turbulence.
Resumo:
Chemorheology (and thus process modeling) of highly filled thermosets used in integrated circuit (IC) packaging has been complicated by their highly filled nature, fast kinetics of curing, and viscoelastic nature. This article summarizes a more thorough chemorheological analysis of a typical IC packaging thermoset material, including novel isothermal and nonisothermal multiwave parallel-plate chemorheology. This new chemorheological analysis may be used to optimize existing and design new IC packaging processes. (C) 1997 John Wiley & Sons, Inc.
Resumo:
A new variation of holographic interferometry has been utilized to perform simultaneous two-wavelength measurements, allowing quantitative analysis of the heavy particle and electron densities in a superorbital facility. An air test gas accelerated to 12 km/s was passed over a cylindrical model, simulating reentry conditions encountered by a space vehicle on a superorbital mission. Laser beams with two different wavelengths have been overlapped, passed through the test section, and simultaneously recorded on a single holographic plate. Reconstruction of the hologram generated two separate interferograms at different. angles from which the quantitative measurements were made. With this technique, a peak electron concentration of (5.5 +/- 0.5) x 10(23) m(-3) was found behind a bow shock on a cylinder. (C) 1997 Optical Society of America.
Resumo:
Evolution of localized folding patterns in layered elastic and visco-elastic materials is reviewed in the context of compressed geological systems. The thin strut or plate embedded in a visco-elastic medium is used as an archetypal example to describe localized buckles which, in contrast to those from earlier formulations, appear in the absence of triggering imperfections. Structural and material effects are surveyed and important nonlinear characteristics are identified. A brief review of possible methods of analysis is conducted.