34 resultados para PASSAGE
Resumo:
Dugong abundances in Moreton Bay (south-east Queensland) were estimated during six bi- monthly aerial surveys throughout 1995. Sampling intensity ranged between 20 and 80% for different sampling zones within the Bay, with a mean intensity of 40.5%. Population estimates for dugongs were corrected for perception bias ( the proportion of animals visible in the transect that were missed by observers), and standardised for availability bias ( the proportion of animals that were invisible due to water turbidity) with survey and species-specific correction factors. Population estimates for dugongs in Moreton Bay ranged from 503 +/- 64 (s.e.) in July to 1019 +/- 166 in January. The highest uncorrected count was 857 dugongs in December. This is greater than previous population estimates, suggesting that either previous surveys have underestimated abundance and/or that this population may have increased through recruitment, immigration, or a combination of both. The high degree of variation in population estimates between surveys may be due to temporal differences in distribution and herding behaviour. In winter, dugongs were found in smaller herds and were dispersed over a wider area than in summer. The Eastern Banks region of the bay supported 80 - 98% of the dugong population at any one time. Within this region, there were several dugong 'hot spots' that were visited repeatedly by large herds. These 'hot spots' contained seagrass communities that were dominated by species that dugongs prefer to eat. The waters of Rous Channel, South Passage and nearby oceanic waters are also frequently inhabited by dugongs in the winter months. Dugongs in other parts of Moreton Bay were at much lower densities than on the Eastern Banks.
Resumo:
Objective To investigate the effect of lipophilicity on the percutaneous penetration of a homologous series of alcohols through canine skin Design Skin harvested from Greyhound thorax was placed in Franz-type diffusion cells and the in vitro passage of radio-labelled (C-14) alcohols (ethanol, butanol, hexanol and octanol (Log P 0.19 - 3.0)) through separate skin sections was measured in replicates of five. Permeability coefficient (k(P), cm/h), maximum flux (J(max), mol/cm(2)/h) and residue remaining within the skin were determined. Results The k(P) increased with increasing lipophilicity (6.2 x 10(-4) +/- 1.6 x 10(-4) cm/h for ethanol to 1.8 x 10(-2) 3.6 x 10(-3) cm/h for octanol). Alcohol residues remaining within each skin sample followed a similar pattern. An exponential decrease in Jmax with increasing lipophilicity was observed. Conclusion Changes in canine skin permeability occur with increasing alcohol lipophilicity. This finding has practical consequences for the design of topical formulations and optimisation of drug delivery through animal skin.
Resumo:
A growing demand for efficient air quality management calls for the development of technologies capable of meeting the stringent requirements now being applied in areas of chemical, biological and medical activities. Currently, filtration is the most effective process available for removal of fine particles from carrier gases. Purification of gaseous pollutants is associated with adsorption, absorption and incineration. In this paper we discuss a new technique for highly efficient simultaneous purification of gaseous and particulate pollutants from carrier gases, and investigate the utilization of Nuclear Magnetic Resonance (NMR) imaging for the study of the dynamic processes associated with gas-liquid flow in porous media. Our technique involves the passage of contaminated carrier gases through a porous medium submerged into a liquid, leading to the formation of narrow and tortuous pathways through the medium. The wet walls of these pathways result in outstanding purification of gaseous, liquid and solid alien additives. NMR imaging was successfully used to map the gas pathways inside the porous medium submerged into the liquid layer. (C) 2002 Elsevier Science B.V. All rights reserved.
Effect of time of harvest of budded virus on the selection of baculovirus FP mutants in cell culture
Resumo:
Rapid formation and selection of FP (few polyhedra) mutants occurs during serial passaging of Helicoverpa armigera nucleopolyhedrovirus (HaSNPV) in insect cell culture. The production of HaSNPV for use as biopesticides requires the passaging of the virus over a number of passages to produce enough virus inoculum for large-scale fermentation. During serial passaging in cell culture, FP mutants were rapidly selected, resulting in declined productivity and reduced potency of virus. Budded virus (BV) is usually harvested between 72 and 96 h postinfection (hpi) in order to obtain a high titer virus stock. In this study, the effect of tine of harvest (TOH) for BV on the selection rate of HaSNPV FP mutants during serial passaging was investigated. BV were harvested at different times postinfection, and each series was serially passaged for six passages. The productivity and percentage of FP mutants at each passage were determined. It was found that the selection of FP mutants can he reduced by employing an earlier TOH for BV. Serial passaging with BV harvested at 48 hpi showed a slower accumulation of FP mutants compared to that of BV harvested after 48 hpi. Higher cell specific yields were also maintained when BV were harvested at 48 hpi. When BV that were formed between 48 and 96 hpi were harvested and serially passaged, FP mutants quickly dominated the virus population. This suggests that the V formed and released between 48 and 96 hpi are most likely from FP mutant infected cells.