39 resultados para Optimization. Markov Chain. Genetic Algorithm. Fuzzy Controller
Resumo:
Eukaryotic genomes display segmental patterns of variation in various properties, including GC content and degree of evolutionary conservation. DNA segmentation algorithms are aimed at identifying statistically significant boundaries between such segments. Such algorithms may provide a means of discovering new classes of functional elements in eukaryotic genomes. This paper presents a model and an algorithm for Bayesian DNA segmentation and considers the feasibility of using it to segment whole eukaryotic genomes. The algorithm is tested on a range of simulated and real DNA sequences, and the following conclusions are drawn. Firstly, the algorithm correctly identifies non-segmented sequence, and can thus be used to reject the null hypothesis of uniformity in the property of interest. Secondly, estimates of the number and locations of change-points produced by the algorithm are robust to variations in algorithm parameters and initial starting conditions and correspond to real features in the data. Thirdly, the algorithm is successfully used to segment human chromosome 1 according to GC content, thus demonstrating the feasibility of Bayesian segmentation of eukaryotic genomes. The software described in this paper is available from the author's website (www.uq.edu.au/similar to uqjkeith/) or upon request to the author.
Resumo:
In electronic support, receivers must maintain surveillance over the very wide portion of the electromagnetic spectrum in which threat emitters operate. A common approach is to use a receiver with a relatively narrow bandwidth that sweeps its centre frequency over the threat bandwidth to search for emitters. The sequence and timing of changes in the centre frequency constitute a search strategy. The search can be expedited, if there is intelligence about the operational parameters of the emitters that are likely to be found. However, it can happen that the intelligence is deficient, untrustworthy or absent. In this case, what is the best search strategy to use? A random search strategy based on a continuous-time Markov chain (CTMC) is proposed. When the search is conducted for emitters with a periodic scan, it is shown that there is an optimal configuration for the CTMC. It is optimal in the sense that the expected time to intercept an emitter approaches linearity most quickly with respect to the emitter's scan period. A fast and smooth approach to linearity is important, as other strategies can exhibit considerable and abrupt variations in the intercept time as a function of scan period. In theory and numerical examples, the optimum CTMC strategy is compared with other strategies to demonstrate its superior properties.
Resumo:
This paper presents an approach for optimal design of a fully regenerative dynamic dynamometer using genetic algorithms. The proposed dynamometer system includes an energy storage mechanism to adaptively absorb the energy variations following the dynamometer transients. This allows the minimum power electronics requirement at the mains power supply grid to compensate for the losses. The overall dynamometer system is a dynamic complex system and design of the system is a multi-objective problem, which requires advanced optimisation techniques such as genetic algorithms. The case study of designing and simulation of the dynamometer system indicates that the genetic algorithm based approach is able to locate a best available solution in view of system performance and computational costs.
Resumo:
T cells recognize peptide epitopes bound to major histocompatibility complex molecules. Human T-cell epitopes have diagnostic and therapeutic applications in autoimmune diseases. However, their accurate definition within an autoantigen by T-cell bioassay, usually proliferation, involves many costly peptides and a large amount of blood, We have therefore developed a strategy to predict T-cell epitopes and applied it to tyrosine phosphatase IA-2, an autoantigen in IDDM, and HLA-DR4(*0401). First, the binding of synthetic overlapping peptides encompassing IA-2 was measured directly to purified DR4. Secondly, a large amount of HLA-DR4 binding data were analysed by alignment using a genetic algorithm and were used to train an artificial neural network to predict the affinity of binding. This bioinformatic prediction method was then validated experimentally and used to predict DR4 binding peptides in IA-2. The binding set encompassed 85% of experimentally determined T-cell epitopes. Both the experimental and bioinformatic methods had high negative predictive values, 92% and 95%, indicating that this strategy of combining experimental results with computer modelling should lead to a significant reduction in the amount of blood and the number of peptides required to define T-cell epitopes in humans.
Resumo:
A significant problem in the collection of responses to potentially sensitive questions, such as relating to illegal, immoral or embarrassing activities, is non-sampling error due to refusal to respond or false responses. Eichhorn & Hayre (1983) suggested the use of scrambled responses to reduce this form of bias. This paper considers a linear regression model in which the dependent variable is unobserved but for which the sum or product with a scrambling random variable of known distribution, is known. The performance of two likelihood-based estimators is investigated, namely of a Bayesian estimator achieved through a Markov chain Monte Carlo (MCMC) sampling scheme, and a classical maximum-likelihood estimator. These two estimators and an estimator suggested by Singh, Joarder & King (1996) are compared. Monte Carlo results show that the Bayesian estimator outperforms the classical estimators in almost all cases, and the relative performance of the Bayesian estimator improves as the responses become more scrambled.
Resumo:
The acceptance-probability-controlled simulated annealing with an adaptive move generation procedure, an optimization technique derived from the simulated annealing algorithm, is presented. The adaptive move generation procedure was compared against the random move generation procedure on seven multiminima test functions, as well as on the synthetic data, resembling the optical constants of a metal. In all cases the algorithm proved to have faster convergence and superior escaping from local minima. This algorithm was then applied to fit the model dielectric function to data for platinum and aluminum.
Resumo:
Applied econometricians often fail to impose economic regularity constraints in the exact form economic theory prescribes. We show how the Singular Value Decomposition (SVD) Theorem and Markov Chain Monte Carlo (MCMC) methods can be used to rigorously impose time- and firm-varying equality and inequality constraints. To illustrate the technique we estimate a system of translog input demand functions subject to all the constraints implied by economic theory, including observation-varying symmetry and concavity constraints. Results are presented in the form of characteristics of the estimated posterior distributions of functions of the parameters. Copyright (C) 2001 John Wiley Sons, Ltd.
Resumo:
Many large-scale stochastic systems, such as telecommunications networks, can be modelled using a continuous-time Markov chain. However, it is frequently the case that a satisfactory analysis of their time-dependent, or even equilibrium, behaviour is impossible. In this paper, we propose a new method of analyzing Markovian models, whereby the existing transition structure is replaced by a more amenable one. Using rates of transition given by the equilibrium expected rates of the corresponding transitions of the original chain, we are able to approximate its behaviour. We present two formulations of the idea of expected rates. The first provides a method for analysing time-dependent behaviour, while the second provides a highly accurate means of analysing equilibrium behaviour. We shall illustrate our approach with reference to a variety of models, giving particular attention to queueing and loss networks. (C) 2003 Elsevier Ltd. All rights reserved.
Resumo:
Cropp and Gabric [Ecosystem adaptation: do ecosystems maximise resilience? Ecology. In press] used a simple phytoplanktonzooplankton-nutrient model and a genetic algorithm to determine the parameter values that would maximize the value of certain goal functions. These goal functions were to maximize biomass, maximize flux, maximize flux to biomass ratio, and maximize resilience. It was found that maximizing goal functions maximized resilience. The objective of this study was to investigate whether the Cropp and Gabric [Ecosystem adaptation: do ecosystems maximise resilience? Ecology. In press] result was indicative of a general ecosystem principle, or peculiar to the model and parameter ranges used. This study successfully replicated the Cropp and Gabric [Ecosystem adaptation: do ecosystems maximise resilience? Ecology. In press] experiment for a number of different model types, however, a different interpretation of the results is made. A new metric, concordance, was devised to describe the agreement between goal functions. It was found that resilience has the highest concordance of all goal functions trialled. for most model types. This implies that resilience offers a compromise between the established ecological goal functions. The parameter value range used is found to affect the parameter versus goal function relationships. Local maxima and minima affected the relationship between parameters and goal functions, and between goal functions. (C) 2003 Elsevier B.V. All rights reserved.