51 resultados para Nonlinear gravitational waves


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The stability of difference inclusions x(k+1) is an element of F(x(k)) is studied, where F(x) = {F(x, gimel) : is an element of Lambda} and the selections F(., gimel) : E -->E assume values in a Banach space E, partially ordered by a cone K. It is assumed that the operators F(.,gimel) are heterotone or pseudoconcave. The main results concern asymptotically stable absorbing sets, and include the case of a single equilibrium point. The results are applied to a number of practical problems.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The electromechanical transfer characteristics of adhesively bonded piezoelectric sensors are investigated. By the use of dynamic piezoelectricity theory, Mindlin plate theory for flexural wave propagation, and a multiple integral transform method, the frequency-response functions of piezoelectric sensors with and without backing materials are developed and the pressure-voltage transduction functions of the sensors calculated. The corresponding simulation results show that the sensitivity of the sensors is not only dependent on the sensors' inherent features, such as piezoelectric properties and geometry, but also on local characteristics of the tested structures and the admittance and impedance of the attached electrical circuit. It is also demonstrated that the simplified rigid mass sensor model can be used to analyze successfully the sensitivity of the sensor at low frequencies, but that the dynamic piezoelectric continuum model has to be used for higher frequencies, especially around the resonance frequency of the coupled sensor-structure vibration system.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Rectangular piezoceramic transducers are widely used in ultrasonic evaluation and health monitoring techniques and structural vibration control applications. In this paper the flexural waves excited by rectangular transducers adhesively attached to isotropic plates are investigated. In view of the difficulties in developing accurate analytical models describing the transfer characteristics of the transducer due to the complex electromechanical transduction processes and transducer-structure interactions involved, a combined theoretical-experimental approach is developed. A multiple integral transform method is used to describe the propagation behaviour of the waves in the plates, while a heterodyne Doppler laser vibrometer is employed as a non-contact receiver device. This combined theoretical-experimental approach enables the efficient characterization of the electromechanical transfer properties of the piezoelectric transducer which is essential for the development of optimized non-destructive evaluation systems. The results show that the assumption of a uniform contact pressure distribution between the transducer and the plate can accurately predict the frequency spectrum and time domain response signals of the propagating waves along the main axes of the rectangular transmitter element.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper, an attempt was made to investigate a fundamental problem related to the flexural waves excited by rectangular transducers. Due to the disadvantages of the Green's function approach for solving this problem, a direct and effective method is proposed using a multiple integral transform method and contour integration technique. The explicit frequency domain solutions obtained from this newly developed method are convenient for understanding transducer behavior and theoretical optimization and experimental calibration of rectangular transducers. The time domain solutions can then be easily obtained by using the fast Fourier transform technique. (C) 2001 Elsevier Science B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Recently there has been experimental and theoretical interest in cross-dispersion effects in rubidium vapor, which allows one beam of light to be guided by another. We present theoretical results which account for the complications created by the D line hyperfine structure of rubidium as well as the presence of the two major isotopes of rubidium. This allows the complex frequency dependence of the effects observed in our experiments to be understood and lays the foundation for future studies of nonlinear propagation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We study the existence of nonnegative solutions of elliptic equations involving concave and critical Sobolev nonlinearities. Applying various variational principles we obtain the existence of at least two nonnegative solutions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We study the continuous problem y"=f(x,y,y'), xc[0,1], 0=G((y(0),y(1)),(y'(0), y'(1))), and its discrete approximation (y(k+1)-2y(k)+y(k-1))/h(2) =f(t(k), y(k), v(k)), k = 1,..., n-1, 0 = G((y(0), y(n)), (v(1), v(n))), where f and G = (g(0), g(1)) are continuous and fully nonlinear, h = 1/n, v(k) = (y(k) - y(k-1))/h, for k =1,..., n, and t(k) = kh, for k = 0,...,n. We assume there exist strict lower and strict upper solutions and impose additional conditions on f and G which are known to yield a priori bounds on, and to guarantee the existence of solutions of the continuous problem. We show that the discrete approximation also has solutions which approximate solutions of the continuous problem and converge to the solution of the continuous problem when it is unique, as the grid size goes to 0. Homotopy methods can be used to compute the solution of the discrete approximation. Our results were motivated by those of Gaines.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The technique of permanently attaching interdigital transducers (IDT) to either flat or curved structural surfaces to excite single Lamb wave mode has demonstrated great potential for quantitative non-destructive evaluation and smart materials design, In this paper, the acoustic wave field in a composite laminated plate excited by an IDT is investigated. On the basis of discrete layer theory and a multiple integral transform method, an analytical-numerical approach is developed to evaluate the surface velocity response of the plate due to the IDTs excitation. In this approach, the frequency spectrum and wave number spectrum of the output of IDT are obtained directly. The corresponding time domain results are calculated by applying a standard inverse fast Fourier transformation technique. Numerical examples are presented to validate the developed method and show the ability of mode selection and isolation. A new effective way of transfer function estimation and interpretation is presented by considering the input wave number spectrum in addition to the commonly used input frequency spectrum. The new approach enables the simple physical evaluation of the influences of IDT geometrical features such as electrode finger widths and overall dimension and excitation signal properties on the input-output characteristics of IDT. Finally, considering the convenience of Mindlin plate wave theory in numerical computations as well as theoretical analysis, the validity is examined of using this approximate theory to design IDT for the excitation of the first and second anti-symmetric Lamb modes. (C) 2002 Elsevier Science Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A simple method is provided for calculating transport rates of not too fine (d(50) greater than or equal to 0.20 mm) sand under sheet flow conditions. The method consists of a Meyer-Peter-type transport formula operating on a time-varying Shields parameter, which accounts for both acceleration-asymmetry and boundary layer streaming. While velocity moment formulae, e.g.., = Constant x calibrated against U-tube measurements, fail spectacularly under some real waves (Ribberink, J.S., Dohmen-Janssen, C.M., Hanes, D.M., McLean, S.R., Vincent, C., 2000. Near-bed sand transport mechanisms under waves. Proc. 27th Int. Conf. Coastal Engineering, Sydney, ASCE, New York, pp. 3263-3276, Fig. 12), the new method predicts the real wave observations equally well. The reason that the velocity moment formulae fail under these waves is partly the presence of boundary layer streaming and partly the saw-tooth asymmetry, i.e., the front of the waves being steeper than the back. Waves with saw-tooth asymmetry may generate a net landward sediment transport even if = 0, because of the more abrupt acceleration under the steep front. More abrupt accelerations are associated with thinner boundary layers and greater pressure gradients for a given velocity magnitude. The two real wave effects are incorporated in a model of the form Q(s)(t) = Q(s)[theta(t)] rather than Q(S)(t) = Q(S)[u(infinity)(t)], i.e., by expressing the transport rate in terms of an instantaneous Shields parameter rather than in terms of the free stream velocity, and accounting for both streaming and accelerations in the 0(t) calculations. The instantaneous friction velocities u(*)(t) and subsequently theta(t) are calculated as follows. Firstly, a linear filter incorporating the grain roughness friction factor f(2.5) and a phase angle phi(tau) is applied to u(infinity)(t). This delivers u(*)(t) which is used to calculate an instantaneous grain roughness Shields parameter theta(2.5)(t). Secondly, a constant bed shear stress is added which corresponds to the streaming related bed shear stress -rho ($) over bar((u) over tilde(w) over tilde)(infinity) . The method can be applied to any u(infinity)(t) time series, but further experimental validation is recommended before application to conditions that differ strongly from the ones considered below. The method is not recommended for rippled beds or for sheet flow with typical prototype wave periods and d(50) < 0.20 turn. In such scenarios, time lags related to vertical sediment movement become important, and these are not considered by the present model. (C) 2002 Elsevier Science B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Animal-based theories of Pavlovian conditioning propose that patterning discriminations are solved using unique cues or immediate configuring. Recent studies with humans, however, provided evidence that in positive and negative patterning two different rules are utilized. The present experiment was designed to provide further support for this proposal by tracking the time course of the allocation of cognitive resources. One group was trained in a positive patterning; schedule (A-, B-, AB+) and a second in a negative patterning schedule (A+, B+, AB-). Electrodermal responses and secondary task probe reaction time were measured. In negative patterning, reaction times were slower during reinforced stimuli than during non-reinforced stimuli at both probe positions while there were no differences in positive patterning. These results support the assumption that negative patterning is solved using a rule that is more complex and requires more resources than does the rule employed to solve positive patterning. (C) 2001 Elsevier Science (USA).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The flow field and the energy transport near thermoacoustic couples are simulated using a 2D full Navier-Stokes solver. The thermoacoustic couple plate is maintained at a constant temperature; plate lengths, which are short and long compared with the particle displacement lengths of the acoustic standing waves, are tested. Also investigated are the effects of plate spacing and the amplitude of the standing wave. Results are examined in the form of energy vectors, particle paths, and overall entropy generation rates. These show that a net heat-pumping effect appears only near the edges of thermoacoustic couple plates, within about a particle displacement distance from the ends. A heat-pumping effect can be seen even on the shortest plates tested when the plate spacing exceeds the thermal penetration depth. It is observed that energy dissipation near the plate increases quadratically as the plate spacing is reduced. The results also indicate that there may be a larger scale vortical motion outside the plates which disappears as the plate spacing is reduced. (C) 2002 Acoustical Society of America.