99 resultados para Non-minimum phase systems


Relevância:

40.00% 40.00%

Publicador:

Resumo:

In this work we investigate the energy gap between the ground state and the first excited state in a model of two single-mode Bose-Einstein condensates coupled via Josephson tunnelling. The ene:rgy gap is never zero when the tunnelling interaction is non-zero. The gap exhibits no local minimum below a threshold coupling which separates a delocalized phase from a self-trapping phase that occurs in the absence of the external potential. Above this threshold point one minimum occurs close to the Josephson regime, and a set of minima and maxima appear in the Fock regime. Expressions for the position of these minima and maxima are obtained. The connection between these minima and maxima and the dynamics for the expectation value of the relative number of particles is analysed in detail. We find that the dynamics of the system changes as the coupling crosses these points.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

We report the successful RAFT-mediated emulsion polymerization of styrene using a non-ionic surfactant (Brij98), the highly reactive 1-phenylethyl phenyldithioacetate (PEPDTA) RAFT agent, and water-soluble initiator ammonium persulfate (APS). The molar ratio of RAFT agent to APS was identical in all experiments. Most of the monomer was contained within the micelles, analogous to microemulsion or miniemulsion systems but without the need of shear, sonication, cosurfactant, or a hydrophobe. The number-average molecular weight increased with conversion and the polydispersity index was below 1.2. This ideal 'living' behavior was only found when molecular weights of 9000 and below were targeted. It was postulated that the rapid transportation of RAFT agent from the monomer swollen micelles to the growing particles was fast on the polymerization timescale, and most if not all the RAFT agent is consumed within the first 10% conversion. In addition, it was postulated that the high nucleation rate from the high rate of exit ( of the R radical from the RAFT agent) and high entry rate from water-phase radicals ( high APS concentration) reduced the effects of 'superswelling' and therefore a similar molar ratio of RAFT agent to monomer was maintained in all growing particles. The high polydispersity indexes found when targeting molecular weights greater than 9000 were postulated to be due to the lower nucleation rate from the lower weight fractions of both APS and RAFT agent. In these cases, 'superswelling' played a dominant role leading to a heterogeneous distribution of RAFT to monomer ratios among the particles nucleated at different times.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The aim of this work was to demonstrate at pilot scale a high level of energy recovery from sewage utilising a primary Anaerobic Migrating Bed Reactor (AMBR) operating at ambient temperature to convert COD to methane. The focus is the reduction in non-renewable CO2 emissions resulting from reduced energy requirements for sewage treatment. A pilot AMBR was operated on screened sewage over the period June 2003 to September 2004. The study was divided into two experimental phases. In Phase 1 the process operated at a feed rate of 10 L/h (HRT 50 h), SRT 63 days, average temperature 28 degrees C and mixing time fraction 0.05. In Phase 2 the operating parameters were 20 L/h, 26 days, 16 degrees C and 0.025. Methane production was 66% of total sewage COD in Phase 1 and 23% in Phase 2. Gas mixing of the reactor provided micro-aeration which suppressed sulphide production. Intermittent gas mixing at a useful power input of 6 W/m(3) provided satisfactory process performance in both phases. Energy consumption for mixing was about 1.5% of the energy conversion to methane in both operating phases. Comparative analysis with previously published data confirmed that methane supersaturation resulted in significant losses of methane in the effluent of anaerobic treatment systems. No cases have been reported where methane was considered to be supersaturated in the effluent. We have shown that methane supersaturation is likely to be significant and that methane losses in the effluent are likely to have been greater than previously predicted. Dissolved methane concentrations were measured at up to 2.2 times the saturation concentration relative to the mixing gas composition. However, this study has also demonstrated that despite methane supersaturation occurring, microaeration can result in significantly lower losses of methane in the effluent (< 11% in this study), and has demonstrated that anaerobic sewage treatment can genuinely provide energy recovery. The goal of demonstrating a high level of energy recovery in an ambient anaerobic bioreactor was achieved. An AMBR operating at ambient temperature can achieve up to 70% conversion of sewage COD to methane, depending on SRT and temperature. (c) 2006 Wiley Periodicals, Inc.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Gelatinisation and retrogradation of starch-whey mixtures were studied in water (pH 7) using the Rapid Visco-Analyser (RVA). The starch:whey ratios ranged from 0:100 - 100:0. Wheat starch, and whey protein concentrate (about 80% solids basis) and isolate (about 96% solids basis) were used. Mixtures with whey isolates were generally more viscous than those with whey concentrates, and this was attributed to fewer non-protein milk components in the former. Whey protein concentrates and isolates reduced the peak, trough and final viscosities of the mixtures, but the breakdown and setback ratios of the mixtures were increased. The gelatinisation temperature increased with whey substitutions indicating that whey protein delayed starch gelatinisation. The temperature of fastest viscosity development decreased as the amount of whey was increased. Whey protein isolate generally exercised a lesser effect than the concentrate. At between 40 - 50% whey substitutions, the dominant phase changed from starch to protein irrespective of the source of the whey protein. An additive law poorly defined selected RVA parameters. Both macromolecules interacted to define the viscosity of the mixture, and an exponential model predicted the viscosity better than the additive law. The results obtained in this study are discussed to assist the understanding of extrusion processing of starch-whey systems as models for whey-fortified snack and ready-to-eat foods. Copyright ©2006 The Berkeley Electronic Press. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The purpose of this study was to determine the attentional demands of natural and imposed gait, as well as the attentional costs of transitions between the walking and running co-ordination patterns. Seven healthy young men and four healthy young women undertook an auditory probe reaction time task concurrently with self-selected gait (Experiment 1) and imposed walking and running (Experiment 2) at different speeds on a motor-driven treadmill. In Experiment 1, where participants were free to choose their own movement pattern to match the speed of travel of the treadmill, normal gait control was shown to have a significant attentional cost, and hence not be automatic in the classical sense. However, this attentional cost did not differ between the two gait modes or at the transition point. In Experiment 2, where participants were required to maintain specific gait modes regardless of the treadmill speed, the maintenance of walking at speeds normally associated with running was found to have an attentional cost whereas this was not the case for running at normal walking speeds. Collectively the findings support a model of gait control in which the normal switching between gait modes is determined with minimal attention demand and in which it is possible to sustain non-preferred gait modes although, in the case of walking, only at a significant attentional/cognitive cost. © 2002 Elsevier Science B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

What entanglement is present in naturally occurring physical systems at thermal equilibrium? Most such systems are intractable and it is desirable to study simple but realistic systems that can be solved. An example of such a system is the one-dimensional infinite-lattice anisotropic XY model. This model is exactly solvable using the Jordan-Wigner transform, and it is possible to calculate the two-site reduced density matrix for all pairs of sites. Using the two-site density matrix, the entanglement of formation between any two sites is calculated for all parameter values and temperatures. We also study the entanglement in the transverse Ising model, a special case of the XY model, which exhibits a quantum phase transition. It is found that the next-nearest-neighbor entanglement (though not the nearest-neighbor entanglement) is a maximum at the critical point. Furthermore, we show that the critical point in the transverse Ising model corresponds to a transition in the behavior of the entanglement between a single site and the remainder of the lattice.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We introduce three area preserving maps with phase space structures which resemble circle packings. Each mapping is derived from a kicked Hamiltonian system with one of the three different phase space geometries (planar, hyperbolic or spherical) and exhibits an infinite number of coexisting stable periodic orbits which appear to ‘pack’ the phase space with circular resonances.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The A(n-1)((1)) trigonometric vertex model with generic non-diagonal boundaries is studied. The double-row transfer matrix of the model is diagonalized by algebraic Bethe ansatz method in terms of the intertwiner and the corresponding face-vertex relation. The eigenvalues and the corresponding Bethe ansatz equations are obtained.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

To simulate cropping systems, crop models must not only give reliable predictions of yield across a wide range of environmental conditions, they must also quantify water and nutrient use well, so that the status of the soil at maturity is a good representation of the starting conditions for the next cropping sequence. To assess the suitability for this task a range of crop models, currently used in Australia, were tested. The models differed in their design objectives, complexity and structure and were (i) tested on diverse, independent data sets from a wide range of environments and (ii) model components were further evaluated with one detailed data set from a semi-arid environment. All models were coded into the cropping systems shell APSIM, which provides a common soil water and nitrogen balance. Crop development was input, thus differences between simulations were caused entirely by difference in simulating crop growth. Under nitrogen non-limiting conditions between 73 and 85% of the observed kernel yield variation across environments was explained by the models. This ranged from 51 to 77% under varying nitrogen supply. Water and nitrogen effects on leaf area index were predicted poorly by all models resulting in erroneous predictions of dry matter accumulation and water use. When measured light interception was used as input, most models improved in their prediction of dry matter and yield. This test highlighted a range of compensating errors in all modelling approaches. Time course and final amount of water extraction was simulated well by two models, while others left up to 25% of potentially available soil water in the profile. Kernel nitrogen percentage was predicted poorly by all models due to its sensitivity to small dry matter changes. Yield and dry matter could be estimated adequately for a range of environmental conditions using the general concepts of radiation use efficiency and transpiration efficiency. However, leaf area and kernel nitrogen dynamics need to be improved to achieve better estimates of water and nitrogen use if such models are to be use to evaluate cropping systems. (C) 1998 Elsevier Science B.V.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Spin glasses are magnetic systems with conflicting and random interactions between the individual spins. The dynamics of spin glasses, as of structural glasses, reflect their complexity. Both in experimental and numerical work the relaxation below the freezing temperature depends strongly on the annealing conditions (aging) and, above the freezing point, relaxation in equilibrium is slow and non-exponential, In this Forum, observed characteristics of the dynamics were summarized and the physical models proposed to explain them were outlined. (C) 1998 Elsevier Science B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The modification of the statistical properties of vacuum fluctuations, via quadrature squeezing, can dramatically reduce the absorptive and dispersive properties of two-level atoms. We show that for some range of parameter values the system exhibits zero absorption accompanied by zero dispersion of the probe field. This complete transparency is attributed to the coherent population oscillations induced by the squeezed vacuum.