75 resultados para Mirror Movement


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Objectives-This study adopted a concurrent task design and aimed to quantify the efficiency and smoothness of voluntary movement in Tourette's syndrome via the use of a graphics tablet which permits analysis of movement profiles. In particular, the aim was to ascertain whether a concurrent task (digit span) would affect the kinematics of goal directed movements, and whether patients with Tourette's syndrome would exhibit abnormal functional asymmetries compared with their matched controls. Methods-Twelve patients with Tourette's syndrome and their matched controls performed 12 vertical zig zag movements, with both left and right hands (with and without the concurrent task), to large or small targets over long or short extents. Results-With short strokes, controls showed the predicted right hand superiority in movement time more strongly than patients with Tourette's syndrome, who instead showed greater hand symmetry with short strokes. The right hand of controls was less force efficient with long strokes and more force efficient with short strokes, whereas either hand of patients with Tourette's syndrome was equally force efficient, irrespective of stroke length, with an overall performance profile similar to but better than that of the controls' left hand. The concurrent task, however, increased the force efficiency of the right hand in patients with Tourette's syndrome and the left hand in controls. Conclusions-Patients with Tourette's syndrome, compared with controls, were not impaired in the performance of fast, goal directed movements such as aiming at targets; they performed in certain respects better than controls. The findings clearly add to the growing literature on anomalous lateralisation in Tourette's syndrome, which may be explained by the recently reported loss of normal basal ganglia asymmetries in that disorder.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Movement-related potentials (MRPs) associated with voluntary movements reflect cortical activity associated with processes Of movement preparation and movement execution. Early-stage pre-movement activity is reduced in amplitude in Parkinson's disease. However it is unclear whether this neurophysiological deficit relates to preparatory or execution-related activity, since previous studies have not been able to separate different functional components of MRPs. Motor imagery is thought to involve mainly processes of movement preparation, with reduced involvement of end-stage movement execution-related processes. Therefore, MRP components relating to movement preparation and execution may be examined separately by comparing MRPs associated with imagined and actual movements. In this study, MRPs were recorded from 14 subjects with Parkinson's disease and 10 age-matched control subjects while they performed a sequential button-pressing task, and while they imagined performance of the same task. Early-stage pre-movement activity was present in both Parkinson's disease patients and control subjects when they imagined movement, but was reduced in amplitude compared with that for actual movement. Movement execution-related components, arising predominantly from the primary motor cortex, were relatively unaffected in Parkinson's disease subjects. However motor preparatory processes, probably involving the supplementary motor area, were reduced in amplitude overall and abnormally prolonged, Indicating impaired termination following the motor response. Further this impaired termination of preparatory-phase activity was observed only in patients with more severe parkinsonian symptoms, and not in early-stage Parkinson's disease.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Rapid shoulder movement is preceded by contraction of the abdominal muscles to prepare the body for the expected disturbance to postural equilibrium and spinal stability provoked by the reactive forces resulting from the movement. The magnitude of the reactive forces is proportional to the inertia of the limb. The aim of the study was to investigate if changes in the reaction time latency of the abdominal muscles was associated with variation in the magnitude of the reactive forces resulting from variation in limb speed. Fifteen participants performed shoulder flexion at three different speeds (fast, natural and slow). The onset of EMG of the abdominal muscles, erector spinae and anterior deltoid (AD) was recorded using a combination of fine-wire and surface electrodes. Mean and peak velocity was recorded for each limb movement speed for five participants. The onset of transversus abdominis (TrA) EMG preceded the onset of AD in only the fast movement condition. No significant difference in reaction time latency was recorded between the fast and natural speed conditions for all muscles. The reaction time of each of the abdominal muscles relative to AD was significantly delayed with the slow movement compared to the other two speeds. The results indicate that the reaction time latency of the trunk muscles is influenced by limb inertia only with limb movement below a threshold velocity.

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Various deficits in the cognitive functioning of people with autism have been documented in recent years but these provide only partial explanations for the condition. We focus instead on an imitative disturbance involving difficulties both in copying actions and in inhibiting more stereotyped mimicking, such as echolalia. A candidate for the neural basis of this disturbance may be found in a recently discovered class of neurons in frontal cortex, 'mirror neurons' (MNs). These neurons show activity in relation both to specific actions performed by self and matching actions performed by others, providing a potential bridge between minds. MN systems exist in primates without imitative and 'theory of mind' abilities and we suggest that in order for them to have become utilized to perform social cognitive functions, sophisticated cortical neuronal systems have evolved in which MNs function as key elements. Early developmental failures of MN systems are likely to result in a consequent cascade of developmental impairments characterised by the clinical syndrome of autism. Crown Copyright (C) 2001 Published by Elsevier Science Ltd. All rights reserved.