73 resultados para Michael Addition Reactions
Resumo:
This paper is a foreword to a series of papers commissioned on 'the impact of science on the beef industry', where the Beef CRC-related collaborative scientific work of Professor Bernard Michael Bindon will be reviewed. These papers will be presented in March 2006, as part of a 'festschrift' to recognise his wider contributions to the Australian livestock industries for over 40 years. Bindon's career involved basic and applied research in many areas of reproductive physiology, genetics, immunology, nutrition, meat science and more recently genomics, in both sheep and cattle. Together with his collaborators, he made large contributions to animal science by improving the knowledge of mechanisms regulating reproductive functions and in elucidating the physiology and genetics of high fecundity livestock. His collaborative studies with many colleagues of the reproductive biology and genetics of the Booroola Merino were amongst the most extensive ever conducted on domestic livestock. He was instrumental in the development of immunological techniques to control ovulation rate and in examining the application of these and other techniques to increase beef cattle reproductive output. This paper tracks his investigations and achievements both within Australia and internationally. In the later stages of his career he was the major influence in attracting a large investment in Cooperative Research Centres for the Australian cattle industry, in which he directed a multi-disciplinary approach to investigate, develop and disseminate science and technology to improve commercial cattle productivity.
Resumo:
Two N-based isomeric copper(II) complexes of the macrocycle trans-6,13-dimethyl-6,13-bis(dimethylamino)1,4,8,11-tetraazacyclotetradecane (L(3)) have been synthesized and characterised spectroscopically and structurally: alpha-[CuL(3)(OH2)(2)]Cl-2, monoclinic, space group C2/m, a = 12.908(4), b = 12.433(2), c = 7.330(2) Angstrom, beta = 105.87(2)degrees, Z = 2; beta-[CuL(3)(OClO3)(2)]. 2H(2)O, monoclinic, space group P2(1)/c, a = 9.708(3), b = 9.686(3), c = 14.202(4) Angstrom, beta = 106.17(1)degrees, Z = 2. The two isomers exhibit very similar co-ordination spheres but significantly different visible electronic maxima. This difference is attributed to an intramolecular N ... H contact between the pendant dimethylamino group and an adjacent secondary amine H atom.
Resumo:
Stem inoculation of clonally propagated lucerne genotypes was used to assess levels of host species and genotype specialisation in Phytophthora medicaginis. A quantitative assessment of pathogenic aggressiveness of 29 P. medicaginis isolates (from lucerne and chickpea) on 9 different clonally propagated lucerne genotypes revealed no significant difference in aggressiveness between isolates from lucerne and those from chickpea on all of the lucerne genotypes. This supported previous studies which showed that P. medicaginis isolates from lucerne and chickpea were indistinguishable using random amplified polymorphic DNA (RAPD) analysis. Analysis of pathogenic aggressiveness towards individual lucerne genotypes revealed, for the first time, specificity of individual P. medicaginis isolates. This has implications for breeding for resistance to P. medicaginis in lucerne, where screening should be done using the widest range of pathogen specificity obtainable.
Resumo:
Primary murine fetal hemopoietic cells were transformed with a fusion protein consisting of the ligand-binding domain of the estrogen receptor and a carboxyl-terminally truncated c-Myb protein (ERMYB), The ERMYB-transformed hemopoietic cells exhibit an immature myeloid phenotype when grown in the presence of beta-estradiol. Upon removal of beta-estradiol, the ERMYB cells display increased adherence, decreased clonogenicity and differentiate to cells exhibiting granulocyte or macrophage morphology, The expression of the c-myc, c-kit, cdc2 and bcl-2 genes, which are putatively regulated by Myb, was investigated in ERMYB cells grown in the presence or absence of beta-estradiol. Neither c-myc nor cdc2 expression was down-regulated after removal of beta-estradiol demonstrating that differentiation is not a consequence of decreased transactivation of these genes by ERMYB. While bcl-2 expression was reduced by 50% in ERMYB cells grown in the absence of beta-estradiol, there was no increase in DNA laddering, suggesting that Myb was not protecting ERMYB cells from apoptosis, In contrast, a substantial (200-fold) decrease in c-kit mRNA level was observed following differentiation of ERMYB cells, and c-kit mRNA could be partially re-induced by the re-addition of beta-estradiol. Furthermore, a reporter construct containing the c-kit promoter was activated when cotransfected with a Myb expression vector, providing further evidence of a role for Myb in the regulation of c-kit.
Resumo:
A social identity theory of leadership is described that views leadership as a group process generated by social categorization and prototype-based depersonalization processes associated with social identity. Group identification, as self-categorization, constructs an intragroup prototypicality gradient that invests the most prototypical member with the appearance of having influence; the appearance arises because members cognitively and behaviorally conform to the prototype. The appearance of influence becomes a reality through depersonalized social attraction processes that make followers agree and comply with the leader's ideas and suggestions. Consensual social attraction also imbues the leader with apparent status and creates a status-based structural differentiation within the group into leader(s) and followers, which has characteristics of unequal status intergroup relations. In addition, a fundamental attribution process constructs a charismatic leadership personality for the leader, which further empowers the leader and sharpens the leader-follower status differential. Empirical support for the theory is reviewed and a range of implications discussed, including intergroup dimensions, uncertainty reduction and extremism, power, and pitfalls of prototype-based leadership.
Resumo:
The catalytic properties of enzymes are usually evaluated by measuring and analyzing reaction rates. However, analyzing the complete time course can be advantageous because it contains additional information about the properties of the enzyme. Moreover, for systems that are not at steady state, the analysis of time courses is the preferred method. One of the major barriers to the wide application of time courses is that it may be computationally more difficult to extract information from these experiments. Here the basic approach to analyzing time courses is described, together with some examples of the essential computer code to implement these analyses. A general method that can be applied to both steady state and non-steady-state systems is recommended. (C) 2001 academic Press.
Resumo:
Conventional methods for detecting differences in microsatellite repeat lengths rely on electrophoretic fractionation on long denaturing polyacrylamide gels, a time-consuming and labor-intensive method. Therefore, there is a need for the development of new and rapid approaches to routinely detect such length polymorphisms. The advent of techniques allowing the coupling of DNA molecules to solid surfaces has provided new prospects in the area of mutation. We describe here the development and optimization of the ligase-assisted spacer addition (LASA) method, a novel and rapid procedure based on an ELISA format to measure microsatellite repeat lengths. The LASA assay was successfully applied to a set of 11 bird samples to assess its capability as a genotyping method.