102 resultados para Methionine cystine


Relevância:

10.00% 10.00%

Publicador:

Resumo:

The complete nucleotide sequence of the genomic RNA from the insect picorna-like virus Drosophila C virus (DCV) was determined. The DCV sequence predicts a genome organization different to that of other RNA virus families whose sequences are known. The single-stranded positive-sense genomic RNA is 9264 nucleotides in length and contains two large open reading frames (ORFs) which are separated by 191 nucleotides. The 5' ORF contains regions of similarities with the RNA-dependent RNA polymerase, helicase and protease domains of viruses from the picornavirus, comovirus and sequivirus families. The 3' ORF encodes the capsid proteins as confirmed by N-terminal sequence analysis of these proteins. The capsid protein coding region is unusual in two ways: firstly the cistron appears to lack an initiating methionine and secondly no subgenomic RNA is produced, suggesting that the proteins may be translated through internal initiation of translation from the genomic length RNA. The finding of this novel genome organization for DCV shows that this virus is not a member of the Picornaviridae as previously thought, but belongs to a distinct and hitherto unrecognized virus family.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Electron paramagnetic resonance (EPR) spectra and X-ray absorption (EXAFS and XANES) data have been recorded for the manganese enzyme aminopeptidase P (AMPP, PepP protein) from Escherichia coli. The biological function of the protein, a tetramer of 50-kDa subunits, is the hydrolysis of N-terminal Xaa-Pro peptide bonds. Activity assays confirm that the enzyme is activated by treatment with Mn2+. The EPR spectrum of Mn2+-activated AMPP at liquid-He temperature is characteristic of an exchange-coupled dinuclear Mn(II) site, the Mn-Mn separation calculated from the zero-field splitting D of the quintet state being 3.5 (+/- 0.1) Angstrom. In the X-ray absorption spectrum of Mn2+-activated AMPP at the Mn K edge, the near-edge features are consistent with octahedrally coordinated Mn atoms in oxidation state +2. EXAFS data, limited to k less than or equal to 12 Angstrom(-1) by traces of Fe in the protein, are consistent with a single coordination shell occupied predominantly by O donor atoms at an average Mn-ligand distance of 2.15 Angstrom, but the possibility of a mixture of O and N donor atoms is not excluded. The Mn-Mn interaction at 3.5 Angstrom, is not detected in the EXAFS, probably due to destructive interference from light outer-shell atoms. The biological function, amino acid sequence and metal-ion dependence of E. coli AMPP are closely related to those of human prolidase, an enzyme that specifically cleaves Xaa-Pro dipeptides. Mutations that lead to human prolidase deficiency and clinical symptoms have been identified. Several known inhibitors of prolidase also inhibit AMPP. When these inhibitors are added to Mn2+-activated AMPP, the EPR spectrum and EXAFS remain unchanged. It can be inferred that the inhibitors either do not bind directly to the Mn centres, or substitute for existing Mn ligands without a significant change in donor atoms or coordination geometry. The conclusions from the spectroscopic measurements on AMPP have been verified by, and complement, a recent crystal structure analysis.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

MiAMP1 is a low-molecular-weight, cysteine-rich, antimicrobial peptide isolated from the nut kernel of Macadamia integrifolia. A DNA sequence encoding MiAMP1 with an additional ATG: start codon was cloned into a modified pET vector under the control of the T7 RNA polymerase promoter. The pET vector was cotransformed together with the vector pSB161, which expresses a rare arginine tRNA. The peptide was readily isolated in high yield from the insoluble fraction of the Escherichia coil extract. The purified peptide was shown to have an identical molecular weight to the native peptide by mass spectroscopy indicating that the N-terminal methionine had been cleaved. Analysis by NMR spectroscopy indicated that the refolded recombinant peptide had a similar overall three-dimensional structure to that of the native peptide. The peptide inhibited the growth of phytopathogenic fungi in vitro in a similar manner to the native peptide. To our knowledge, MiAMP1 is the first antimicrobial peptide from plants to be functionally expressed in E. coil. This will permit a detailed structure-function analysis of the peptide and studies of its mode of action on phytopathogens. (C) 1999 Academic Press.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We have isolated a family of insect-selective neurotoxins from the venom of the Australian funnel-web spider that appear to be good candidates for biopesticide engineering. These peptides, which we have named the Janus-faced atracotoxins (J-ACTXs), each contain 36 or 37 residues, with four disulfide bridges, and they show no homology to any sequences in the protein/DNA databases. The three-dimensional structure of one of these toxins reveals an extremely rare vicinal disulfide bridge that we demonstrate to be critical for insecticidal activity. We propose that J-ACTX comprises an ancestral protein fold that we refer to as the disulfide-directed beta-hairpin.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The three-dimensional solution structure of conotoxin TVIIA, a 30-residue polypeptide from the venom of the piscivorous cone snail Conus tulipa, has been determined using 2D H-1 NMR spectroscopy. TVIIA contains six cysteine residues which form a 'four-loop' structural framework common to many peptides from Conus venoms including the omega-, delta-, kappa-, and mu O-conotoxins. However, TVIIA does not belong to these well-characterized pharmacological classes of conotoxins, but displays high sequence identity with conotoxin GS, a muscle sodium channel blocker from Conus geographus. Structure calculations were based on 562 interproton distance restraints inferred from NOE data, together with 18 backbone and nine side-chain torsion angle restraints derived from spin-spin coupling constants. The final family of 20 structures had mean pairwise rms differences over residues 2-27 of 0.18 +/- 0.05 Angstrom for the backbone atoms and 1.39 +/- 0.33 Angstrom for all heavy atoms. The structure consists of a triple-stranded, antiparallel beta sheet with +2x, -1 topology (residues 7-9, 16-20 and 23-27) and several beta turns. The core of the molecule is formed by three disulfide bonds which form a cystine knot motif common to many toxic and inhibitory polypeptides. The global fold, molecular shape and distribution of amino-acid sidechains in TVIIA is similar to that previously reported for conotoxin GS, and comparison with other four-loop conotoxin structures provides further indication that TVIIA and GS represent a new and distinct subgroup of this structural family. The structure of TVIIA determined in this study provides the basis for determining a structure-activity relationship for these molecules and their interaction with target receptors.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Transposon mutagenesis and complementation studies previously identified a gene (xabB) for a large (526 kDa) polyketide-peptide synthase required for biosynthesis of albicidin antibiotics and phytotoxins in the sugarcane leaf scald pathogen Xanthomonas albilineans. A cistron immediately downstream from xabB encodes a polypeptide of 343 aa containing three conserved motifs characteristic of a family of S-adenosyl-L-methionine (SAM)-dependent O-methyltransferases. Insertional mutagenesis and complementation indicate that the product of this cistron (designated xabC) is essential for albicidin production, and that there is no other required downstream cistron. The xab promoter region is bidirectional, and insertional mutagenesis of the first open reading frame (ORF) in the divergent gene also blocks albicidin biosynthesis. This divergent ORF (designated thp) encodes a protein of 239 aa displaying high similarity to several IS21-like transposition helper proteins. The thp cistron is not located in a recognizable transposon, and is probably a remnant from a past transposition event that may have contributed to the development of the albicidin biosynthetic gene cluster. Failure of 'in trans' complementation of rhp indicates that a downstream cistron transcribed with thp is required for albicidin biosynthesis. (C) 2000 Elsevier Science B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Much interest has been generated by recent reports on the discovery of circular (i.e. head-to-tail cyclized) proteins in plants. Here we report the three-dimensional structure of one of the newest such circular proteins, MCoTI-II, a novel trypsin inhibitor from Momordica cochinchinensis, a member of the Cucurbitaceae plant family. The structure consists of a small beta -sheet, several turns, and a cystine knot arrangement of the three disulfide bonds. Interestingly, the molecular topology is similar to that of the plant cyclotides (Craik, D. J., Daly, N. L., Bond, T., and Waine, C. (1999) J. Mol. Biol, 294, 1327-1336), which derive from the Rubiaceae and Violaceae plant families, have antimicrobial activities, and exemplify the cyclic cystine knot structural motif as part of their circular backbone. The sequence, biological activity, and plant family of MCoTI-II are all different from known cyclotides. However, given the structural similarity, cyclic backbone, and plant origin of MCoTI-II, we propose that MCoTI-II can be classified as a new member of the cyclotide class of proteins. The expansion of the cyclotides to include trypsin inhibitory activity and a new plant family highlights the importance and functional variability of circular proteins and the fact that they are more common than has previously been believed, Insights into the possible roles of backbone cyclization have been gained by a comparison of the structure of MCoTI-II with the homologous acyclic trypsin inhibitors CMTI-I and EETI-II from the Cucurbitaceae plant family.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The recently discovered cyclotides kalata B1 and kalata B2 are miniproteins containing a head-to-tail cyclized backbone and a cystine knot motif, in which disulfide bonds and the connecting backbone segments form a ring that is penetrated by the third disulfide bond. This arrangement renders the cyclotides extremely stable against thermal and enzymatic decay, making them a possible template onto which functionalities can be grafted.We have compared the hydrodynamic properties of two prototypic cyclotides, kalata B1 and kalata B2, using analytical ultracentrifugation techniques. Direct evidence for oligomerization of kalata B2 was shown by sedimentation velocity experiments in which a method for determining size distribution of polydisperse molecules in solution was employed. The shape of the oligomers appears to be spherical. Both sedimentation velocity and equilibrium experiments indicate that in phosphate buffer kalata B1 exists mainly as a monomer, even at millimolar concentrations. In contrast, at 1.6 mM, kalata B2 exists as an equilibrium mixture of monomer (30%), tetramer (42%), octamer (25%), and possibly a small proportion of higher oligomers. The results from the sedimentation equilibrium experiments show that this self-association is concentration dependent and reversible. We link our findings to the three-dimensional structures of both cyclotides, and propose two putative interaction interfaces on opposite sides of the kalata B2 molecule, one involving a hydrophobic interaction with the Phe(6), and the second involving a charge-charge interaction with the Asp(25) residue. An understanding of the factors affecting solution aggregation is of vital importance for future pharmaceutical application of these molecules.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The plant cyclotides are a family of 28 to 37 amino acid miniproteins characterized by their head-to-tail cyclized peptide backbone and six absolutely conserved Cys residues arranged in a cystine knot motif: two disulfide bonds and the connecting backbone segments form a loop that is penetrated by the third disulfide bond. This knotted disulfide arrangement, together with the cyclic peptide backbone, renders the cyclotides extremely stable against enzymatic digest as well as thermal degradation, making them interesting targets for both pharmaceutical and agrochemical applications. We have examined the expression patterns of these fascinating peptides in various Viola species (Violaceae). All tissue types examined contained complex mixtures of cyclotides, with individual profiles differing significantly. We provide evidence for at least 57 novel cyclotides present in a single Viola species (Viola hederacea). Furthermore, we have isolated one cyclotide expressed only in underground parts of V, hederacea and characterized its primary and three-dimensional structure. We propose that cyclotides constitute a new family of plant defense peptides, which might constitute an even larger and, in their biological function, more diverse family than the well-known plant defensins.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Several peptides sharing high sequence homology with lactoferricin B (Lf-cin B) were generated from bovine lactoferrin (Lf) with recombinant chymosin. Two peptides were copurified. one identical to Lf-cin B and another differing from Lf-cin B by the inclusion of a C-terminal alanine (lactoferricin). Two other peptides were copurified from chymosin-hydrolyzed Lf. one differing from Lf-cin B by the inclusion of C-terminal alanyl-leucine and the other being a heterodimer linked by a disulfide bond, These peptides were isolated in a single step from chymosin-hydrolyzed Lf by membrane ton-exchange chromatography and were purified by reverse-phase high-pressure liquid chromatography (HPLC), They were characterized by. N-terminal Edman sequencing, mass spectrometry, and antibacterial activity determination, Pure lactoferricin, prepared from pepsin-hydrolyzed Lf, was purified by standard chromatography techniques, This peptide was analyzed against a number of gram-positive and gram-negative bacteria before and after reduction of its disulfide bond or cleavage after its single methionine residue and was found to inhibit the growth of all the test bacteria at a concentration of 8 mu M or less, Subfragments of lactoferricin were isolated from reduced and cleaved peptide by reverse-phase HPLC, Subfragment 1 (residues I to 10) was active against most of the test microorganisms at concentrations of 10 to 50 mu M. Subfragment 2 (residues 11 to 26) was active against only a few microorganisms at concentrations up to 100 mu M. These antibacterial studies indicate that the activity of lactoferricin Is mainly, but not wholly, due to its N-terminal region.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Papillomaviruses (PVs) bind in a specific and saturable fashion to a range of epithelial and other cell lines. Treatment of cells with trypsin markedly reduces their ability to bind virus particles, suggesting that binding is mediated via a cell membrane protein. We have investigated the interaction bf human PV type 6b L1 virus-like particles (VLPs) with two epithelial cell lines, CV-1 and HaCaT, which bind VLPs, and a B-cell line (DG75) previously shown not to bind VLPs. Immunoprecipitation of a mixture of PV VLPs with [S-35]methionine-labeled cell extracts and with biotin-labeled cell surface proteins identified four proteins from CV-1 and HaCaT cells of 220, 120, 87, and 35 kDa that reacted with VLPs and were not present in DG75 cells. The alpha(6) beta(4) integrin complex has subunits corresponding to the VLP precipitated proteins, and the tissue distribution of this complex suggested that it was a candidate human PV receptor. Monoclonal antibodies (MAbs) to the alpha(6) or beta(4) integrin subunits precipitated VLPs from a mixture of CV-1 cell proteins and VLPs, whereas MAbs to other integrin subunits did not. An alpha(6) integrin-specific MAb (GoH3) inhibited VLP binding to CV-1 and HaCaT cells, whereas an anti-beta(4) integrin MAb and a range of integrin-specific and other MAbs did not. Furthermore, human laminin, the natural ligand for the alpha(6) beta(4) integrin, was able to block VLP binding. By use of sections of monkey esophagus, the distribution of alpha(6), integrin expression in the basal epithelium was shown to coincide with the distribution of bound VLPs. Taken together, these data suggest that VLPs bind specifically to the alpha(6) integrin subunit and that integrin complexes containing alpha(6) integrin complexed with either beta(1) or beta(4) integrins may act as a receptor for PV binding and entry into epithelial cells.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The gene encoding the large conductance mechanosensitive ion channel (MscL) of Escherichia coli and several deletion mutants of mscL were cloned under the control of the T7 RNA polymerase promoter. Transformation of these constructs into an E. coli strain carrying an inducible T7 RNA polymerase gene allowed the specific production and labelling of MscL with [S-35]methionine. Preparation of membrane fractions of E. coli cells by sucrose gradient centrifugation indicated that the radiolabelled MscL was present in the inner cytoplasmic membrane in agreement with results of several studies. However, treatment of the labelled cells and cell membrane vesicles with various cross-linkers resulted in the majority of labelled protein migrating as a monomer with a small proportion of molecules (approximate to 25%) migrating as dimers and higher order multimers. This result is in contrast with a finding of a study suggesting that the channel exclusively forms hexamers in the cell membrane off. coli (1) and therefore may have profound implication for the activation and/or ''multimerization'' of the channel by mechanical stress exerted to the membrane. In addition, from the specific activity of the radiolabelled protein and the amount of protein in the cytoplasmic membrane fraction we estimated the number of MscL ion channels expressed under these conditions to be approximately 50 channels per single bacterium. (C) 1997 Academic Press.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Background: The venoms of Conus snails contain small, disulfide-rich inhibitors of voltage-dependent sodium channels. Conotoxin GS is a 34-residue polypeptide isolated from Conus geographus that interacts with the extracellular entrance of skeletal muscle sodium channels to prevent sodium ion conduction. Although conotoxin GS binds competitively with mu conotoxin GIIIA to the sodium channel surface, the two toxin types have little sequence identity with one another, and conotoxin GS has a four-loop structural framework rather than the characteristic three-loop mu-conotoxin framework. The structural study of conotoxin GS will form the basis for establishing a structure-activity relationship and understanding its interaction with the pore region of sodium channels. Results: The three-dimensional structure of conotoxin GS was determined using two-dimensional NMR spectroscopy. The protein exhibits a compact fold incorporating a beta hairpin and several turns. An unusual feature of conotoxin GS is the exceptionally high proportion (100%) of cis-imide bond geometry for the three proline or hydroxyproline residues. The structure of conotoxin GS bears little resemblance to the three-loop mu conotoxins, consistent with the low sequence identity between the two toxin types and their different structural framework. However, the tertiary structure and cystine-knot motif formed by the three disulfide bonds is similar to that present in several other polypeptide ion channel inhibitors. Conclusions: This is the first three-dimensional structure of a 'four-loop' sodium channel inhibitor, and it represents a valuable new structural probe for the pore region of voltage-dependent sodium channels. The distribution of amino acid sidechains in the structure creates several polar and charged patches, and comparison with the mu conotoxins provides a basis for determining the binding surface of the conotoxin GS polypeptide.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A family of potent insecticidal toxins has recently been isolated from the venom of Australian funnel web spiders. Among these is the 37-residue peptide omega-atracotoxin-HV1 (omega-ACTX-HV1) from Hadronyche versuta. We have chemically synthesized and folded omega-ACTX-HV1, shown that it is neurotoxic, ascertained its disulphide bonding pattern, and determined its three-dimensional solution structure using NMR spectroscopy. The structure consists of a solvent-accessible beta-hairpin protruding from a disulphide-bonded globular core comprising four beta-turns. The three intramolecular disulphide bonds form a cystine knot motif similar to that seen in several other neurotoxic peptides. Despite limited sequence identity, omega-ACTX-HV1 displays significant structural homology with the omega-agatoxins and omega-conotoxins, both of which are vertebrate calcium channel antagonists; however, in contrast with these toxins, we show that omega-ACTX-HV1 inhibits insect, but not mammalian, voltage-gated calcium channel currents.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Background: Versutoxin (delta-ACTX-Hv1) is the major component of the venom of the Australian Blue Mountains funnel web spider, Hadronyche versuta. delta-ACTX-Hv1 produces potentially fatal neurotoxic symptoms in primates by slowing the inactivation of voltage-gated sodium channels; delta-ACTX-Hv1 is therefore a useful tool for studying sodium channel function. We have determined the three-dimensional structure of delta ACTX-Hv1 as the first step towards understanding the molecular basis of its interaction with these channels. Results: The solution structure of delta-ACTX-Hv1, determined using NMR spectroscopy, comprises a core beta region containing a triple-stranded antiparallel beta sheet, a thumb-like extension protruding from the beta region and a C-terminal 3(10) helix that is appended to the beta domain by virtue of a disulphide bond. The beta region contains a cystine knot motif similar to that seen in other neurotoxic polypeptides. The structure shows homology with mu-agatoxin-l, a spider toxin that also modifies the inactivation kinetics of vertebrate voltage-gated sodium channels. More surprisingly, delta-ACTX-Hv1 shows both sequence and structural homology with gurmarin, a plant polypeptide. This similarity leads us to suggest that the sweet-taste suppression elicited by gurmarin may result from an interaction with one of the downstream ion channels involved in sweet-taste transduction. Conclusions: delta-ACTX-Hv1 shows no structural homology with either sea anemone or alpha-scorpion toxins, both of which also modify the inactivation kinetics of voltage-gated sodium channels by interacting with channel recognition site 3. However, we have shown that delta-ACTX-Hv1 contains charged residues that are topologically related to those implicated in the binding of sea anemone and alpha-scorpion toxins to mammalian voltage-gated sodium channels, suggesting similarities in their mode of interaction with these channels.