47 resultados para Metal complexes. Characterization. Synthesis
Resumo:
New tin(IV) complexes of empirical formula, Sn(SNNNS)I-2 (SNNNS = anionic form of the 2,6-diacetylpyridine Schiff bases of S-methyl- or S-benzyldithiocarbazate) have been prepared and characterized by a variety of physico-chemical techniques. The structure of Sn(dapsme)I-2 has been determined by single crystal X-ray crystallographic structural analysis. The complex has a seven-coordinate distorted pentagonal-bipyramidal geometry with the Schiff base coordinated to the tin(IV) ion as a dinegatively charged pentadentate chelating agent via the pyridine nitrogen atom, the two azomethine nitrogen atoms and the two thiolate sulfur atoms. The ligand occupies the equatorial plane and the iodo ligands are coordinated to the tin(IV) ion at axial positions. The distortion from an ideal pentagonal bipyramidal geometry is attributed to the restricted bite size of the pentadentate ligands. (C) 2004 Elsevier Ltd. All rights reserved.
Resumo:
The turbostratic mesoporous carbon blacks were prepared by catalytic chemical vapour decomposition (CCVD) of acetylene using Ni/MgO catalysts prepared by co-precipitation. The relationship between deposition conditions and the nanostructures of resultant carbon black materials was investigated. It was found that the turbostratic and textural structures of carbon blacks are dependent on the deposition temperature and nickel catalyst loading. Higher deposition temperature increases the carbon crystallite unit volume V-nano and reduces the surface area of carbon samples. Moreover, a smaller V-nano is produced by a higher Ni loading at the same deposition temperature. In addition of the pore structure and the active metal surface area of the catalyst, the graphitic degree or electronic conductivity of the carbon support is also a key issue to the activity of the supported catalyst. V-nano is a very useful parameter to describe the effect of the crystalline structure of carbon blacks on the reactivity of carbon blacks in oxygen-carbon reaction and the catalytic activity of carbon-supported catalyst in ammonia decomposition semi-quantitatively. (C) 2006 Elsevier B.V. All rights reserved.
Resumo:
The binuclear complex [NBu4n](4)[Cr-2(ox)(5)]. 2CHCl(3) has been prepared by an ion-exchange procedure employing Dowex 50WX2 cation-exchange resin in the n-butylammonium form and potassium tris(oxalato)chromate(III). The dimeric complex was characterised by a crystal structure determination: monoclinic, space group C2/c, a = 29.241(7), b = 15.192(2), c = 22.026(5) Angstrom, beta = 94.07(1)degrees, Z = 4. The magnetic susceptibility (300-4.2 K) indicated that the chromium(III) sites were antiferromagnetically coupled (J = -3.1 cm(-1)).
Resumo:
The bulk free radical copolymerizations of 2-hydroxyethyl methacrylate (HEMA) with n-butyl methacrylate (BMA) or cyclohexyl methacrylate (CHMA) were studied over the composition mole fraction interval of 0-1 for HEMA in the monomer feed. The C-13 NMR (125 MHz) spectra of the copolymers were analysed to determine the copolymer composition and the stereochemical configuration of the copolymers. The terminal model reactivity ratios of HEMA and BMA were found to be r(HEMA) = 1.73 and r(BMA) = 0.65 and for HEMA and CHMA, r(HEMA) = 1.26 and r(CHMA) = 0.31. The BMA and CHMA homopolymers were found to be predominantly syndiotactic with isotacticity parameters of theta(BB) = 0.18 and theta(CC) = 0.19, respectively. The copolymers were also found to be predominantly syndiotactic, indicating a strong tendency for racemic additions of the monomers in the formation of the copolymers. The diffusion of water into cylinders of poly(HEMA-co-BMA) and poly(HEMA-co-CHMA) was studied over a range of copolymer compositions and was found to be Fickian. The diffusion coefficients of water at 37 degrees C were determined from swelling measurements and were found to vary from 1.72 x 10(-11) m(2) s(-1) for polyHEMA to 0.97 x 10(-11) m(2) s(-1) for poly(HEMA-co-BMA) having a mole fraction F-HEMA = 0.80 and to 0.91 x 10(-11) m(2) s(-1) for a poly(HEMA-co-CHMA) also having F-HEMA = 0.80. The mass of water absorbed at equilibrium relative to the mass of dry polymer varied from 58.8 for polyHEMA to 27.2% for poly(HEMA-co-BMA) having F-HEMA = 0.85 and to 21.3% for poly(HEMA-co-CHMA) having F-HEMA = 0.80. (C) 1999 Elsevier Science Ltd. All rights reserved.
Resumo:
The 32-residue peptide, RK-1, a novel kidney-derived three disulfide-bonded member of the antimicrobial alpha-defensin family, was synthesized by the continuous now Fmoc-solid phase method. The crude, cleaved and S-reduced Linear peptide was both efficiently folded and oxidized in an acidic solution of aqueous dimethyl sulfoxide. Following purification of the resulting product, it was shown by a variety of analytical techniques, including matrix assisted laser desorption time of flight mass spectrometry, to possess a very high degree of purity. The disulfide bond pairing of the synthetic peptide was determined by H-1-NMR spectroscopy and confirmed to be a Cys(1)-Cys(6), Cys(2)-Cys(4), Cys(3)-Cys(5) arrangement similar to other mammalian alpha-defensin peptides. The synthetic RK-1 was also shown to inhibit the growth of Escherichia coli type strain NCTC 10418, Copyright (C) 2000 European Peptide Society and John Wiley & Sons, Ltd.
Resumo:
A novel conotoxin belonging to the 'four-loop' structural class has been isolated from the venom of the piscivorous cone snail Conus tulipa. It was identified using a chemical-directed strategy based largely on mass spectrometric techniques. The new toxin, conotoxin TVIIA, consists of 30 amino-acid residues and contains three disulfide bonds. The amino-acid sequence was determined by Edman analysis as SCSGRDSRCOOVCCMGLMCSRGKCVSIYGE where O = 4-transl-hydroxyproline. Two under-hydroxylated analogues, [Pro10]TVIIA and [Pro10,11]TVIIA, were also identified in the venom of C. tulipa. The sequences of TVIIA and [Pro10]TVIIA were further verified by chemical synthesis and coelution studies with native material. Conotoxin TVIIA has a six cysteine/four-loop structural framework common to many peptides from Conus venoms including the omega-, delta- and kappa-conotoxins. However, TVIIA displays little sequence homology with these well-characterized pharmacological classes of peptides, but displays striking sequence homology with conotoxin GS, a peptide from Conus geographus that blocks skeletal muscle sodium channels. These new toxins and GS share several biochemical features and represent a distinct subgroup of the four-loop conotoxins.
Resumo:
Mesoporous Ti-substituted aluminophosphates (AlPOs) with a hexagonal, cubic and lamellar pore structure, characteristic of MCM-41, MCM-48. and MCM-50, respectively, were synthesized. The stability of these mesophases upon template removal was studied. The pore structures, surface properties, and local atom environments of Al, P, and Ti of the hexagonal and cubic Ti-containing mesoporous products were extensively characterized using X-ray diffraction, magic angle spinning nuclear magnetic resonance, AAS, XPS, ultraviolet-visible, and adsorption of nitrogen and water vapor techniques while the lamellar mesophase was not further characterized due to its very poor thermal stability. Ti-containing mesoporous AlPO materials show a reasonable thermal stability upon template removal, a hydrophilic surface property, and high porosity showing application potentials in catalytic oxidation of hydrocarbons. (C) 2001 Elsevier Science B,V. All rights reserved.
Resumo:
The high speciFIcity of alpha-conotoxins for different neuronal nicotinic acetylcholine receptors makes them important probes for dissecting receptor subtype selectivity. New sequences continue to expand the diversity and utility of the pool of available alpha-conotoxins. Their identification and characterization depend on a suite of techniques with increasing emphasis on mass spectrometry and microscale chromatography, which have benefited from recent advances in resolution and capability. Rigorous physicochemical analysis together with synthetic peptide chemistry is a prerequisite for detailed conformational analysis and to provide sufficient quantities of alpha-conotoxins for activity assessment and structure-activity relationship studies.
Resumo:
Gold(III)-directed condensation of ethane-1,2-diamine with nitroethane and formaldehyde yielded the gold-coloured macrocyclic complex (cis-6,13-dimethyl-6,13-dinitro-1,4,8,11-tetraazacyclotetradecan-1-ido)gold(III) and the orange acyclic complex (1,9-diamino-5-methyl-5-nitro-3,7-diazanoran-3-ido)gold(III) in good yields. Dissolution in strongly acidic solution gave the colourless fully protonated complexes. The pendant nitro groups are disposed on the same side of the macrocycle in a cis geometry, as confirmed by crystal structure analysis. In both complexes the gold ion lies in a square-planar environment of four nitrogen donors, and the co-ordinate bond to the deprotonated amine is shorter than the remaining Au-N distances.
Resumo:
O-Acyl esters were prepared from salicylic acid and diflunisal by esterification with the appropriate acyl anhydride (in the presence of sulfuric acid at 80 degrees C) or acyl chloride (in the presence of pyridine at 0 degrees C). Synthesis, identification and characterization of these compounds is described. In vitro hydrolysis, solubility and protein binding studies of these O-acyl esters were performed. For the diflunisal esters, the melting points fell as the side chain was increased from ethyl to pentyl. The melting points showed no significant difference as the length of the side chain was increased from pentyl to heptyl. The aspirin analogues showed a similar trend, The relationship between solubility and carbon chain length agreed closely with that for the melting points with carbon chain length. In vitro non-enzymatic hydrolysis studies concluded that: (1) hydrolysis rate constants generally decreased with carbon chain length; (2) the diflunisal esters have shorter half lives compared with their salicylate counterparts; and (3) the in vitro hydrolysis of these compounds was retarded by the presence of bovine serum albumin. Protein binding experiments showed that the strength of binding of the aspirin and diflunisal analogues to bovine serum albumin increased with carbon chain length. (C) 1997 Elsevier Science B.V.
Resumo:
Mesoporous Ti-substituted aluminophosphates (AlPOs) with a hexagonal, cubic and lamellar pore structure, characteristic of MCM-41, MCM-48, and MCM-50, respectively, were synthesized. The stability of these mesophases upon template removal was studied. The pore structures, surface properties, and local atom environments of Al, P, and Ti of the hexagonal and cubic Ti-containing mesoporous products were extensively characterized using X-ray diffraction, magic angle spinning nuclear magnetic resonance, AAS, XPS, ultraviolet–visible, and adsorption of nitrogen and water vapor techniques while the lamellar mesophase was not further characterized due to its very poor thermal stability. Ti-containing mesoporous AlPO materials show a reasonable thermal stability upon template removal, a hydrophilic surface property, and high porosity showing application potentials in catalytic oxidation of hydrocarbons.
Resumo:
Several new lariat-crown ethers bearing either bridged bisdioxine or tetraoxaadamantane units as chiral substituents are prepared by reacting the corresponding amino-crown ether derivatives with the dimeric alpha-oxoketene, the latter obtained by flash vacuum pyrolysis of a furan-2,3-dione precursor. Complexation properties towards differently charged metal ions are investigated by H-1 NMR titration to obtain complexation constants (K-c-values for potassium/ sodium rhodanides: 480-1100 mol dm(-3)), as well as extraction experiments to explore the metal ion transportation abilities of the new lariat crown derivatives. In particular, a significantly increased ability to transport metal ions from water into chloroform was found with spherical tetraoxaadamantyl derivatives when compared with the free amino-benzocrown ethers.
Resumo:
delta-Atracotoxin-Ar1a (delta-ACTX-Ar1a) is the major polypeptide neurotoxin isolated from the venom of the male Sydney funnel-web spider, Atrax robustus. This neurotoxin targets both insect and mammalian voltage-gated sodium channels, where it competes with scorpion alpha-toxins for neurotoxin receptor site-3 to slow sodium-channel inactivation. Progress in characterizing the structure and mechanism of action of this toxin has been hampered by the limited supply of pure toxin from natural sources. In this paper, we describe the first successful chemical synthesis and oxidative refolding of the four-disulfide bond containing delta-ACTX-Ar1a. This synthesis involved solid-phase Boc chemistry using double coupling, followed by oxidative folding of purified peptide using a buffer of 2 M GdnHCl and glutathione/glutathiol in a 1:1 mixture of 2-propanol (pH 8.5). Successful oxidation and refolding was confirmed using both chemical and pharmacological characterization. Ion spray mass spectrometry was employed to confirm the molecular weight. H-1 NMR analysis showed identical chemical shifts for native and synthetic toxins, indicating that the synthetic toxin adopts the native fold. Pharmacological studies employing whole-cell patch clamp recordings from rat dorsal root ganglion neurons confirmed that synthetic delta-ACTX-Ar1a produced a slowing of the sodium current inactivation and hyperpolarizing shifts in the voltage-dependence of activation and inactivation similar to native toxin. Under current clamp conditions, we show for the first time that delta-ACTX-Ar1a produces spontaneous repetitive plateau potentials underlying the clinical symptoms seen during envenomation. This successful oxidative refolding of synthetic delta-ACTX-Ar1a paves the way for future structure-activity studies to determine the toxin pharmacophore.