35 resultados para Metabolic quantification
Quantification and assessment of fault uncertainty and risk using stochastic conditional simulations
Resumo:
Glycogen-accumulating organisms (GAO) have the potential to directly compete with polyphosphate-accumulating organisms (PAO) in EBPR systems as both are able to take up VFA anaerobically and grow on the intracellular storage products aerobically. Under anaerobic conditions GAO hydrolyse glycogen to gain energy and reducing equivalents to take up VFA and to synthesise polyhydroxyalkanoate (PHA). In the subsequent aerobic stage, PHA is being oxidised to gain energy for glycogen replenishment (from PHA) and for cell growth. This article describes a complete anaerobic and aerobic model for GAO based on the understanding of their metabolic pathways. The anaerobic model has been developed and reported previously, while the aerobic metabolic model was developed in this study. It is based on the assumption that acetyl-CoA and propionyl-CoA go through the catabolic and anabolic processes independently. Experimental validation shows that the integrated model can predict the anaerobic and aerobic results very well. It was found in this study that at pH 7 the maximum acetate uptake rate of GAO was slower than that reported for PAO in the anaerobic stage. On the other hand, the net biomass production per C-mol acetate added is about 9% higher for GAO than for PAO. This would indicate that PAO and GAO each have certain competitive advantages during different parts of the anaerobic/aerobic process cycle. (C) 2002 Wiley Periodicals, Inc.
Resumo:
Aims: To quantify Listeria levels on the shell and flesh of artificially contaminated cooked prawns after peeling, and determine the efficacy of Listeria innocua as a model for L. monocytogenes in this system. Methods and Results: A L. monocytogenes and L. innocua strain were inoculated separately onto cooked black tiger prawns using two protocols ( immersion or swabbing with incubation). Prawns were peeled by two methods ( gloved hand or scalpel and forceps) and numbers of Listeria on shells, flesh and whole prawn controls were determined. Prawns were exposed to crystal violet dye to assess the penetration of liquids. Regardless of preparation method or bacterial strain there were ca 1log(10) CFU more Listeria per shell than per peeled prawn. Dye was able to penetrate to the flesh in all cases. Conclusions: Shell-on prawns may be only slightly safer than shell-off prawns. Listeria innocua is an acceptable model for L. monocytogenes in this system. Significance and Impact of the Study: Reduced risk from L. monocytogenes on prawns can only be assured by adequate hygiene or heating.