47 resultados para Membrane protein, In-vitro synthesis, Cytochrome bo3- Ubiquinol Oxidase


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Australian funnel-web spiders are recognized as one of the most venomous spiders to humans world-wide. Funnel-web spider antivenom (FWS AV) reverses clinical effects of envenomation from the bite of Atrax robustus and a small number of related Hadronyche species. This study assessed the in vitro efficacy of FWS AV in neutralization of the effects of funnel-web spider venoms, collected from various locations along the eastern seaboard of Australia, in an isolated chick biventer cervicis nerve-muscle preparation. Venoms were separated by SDS-PAGE electrophoresis to compare protein composition and transblotted for Western blotting and incubation with FWS AV. SDS-PAGE of venoms revealed similar low and high molecular weight protein bands. Western blotting with FWS AV showed similar antivenom binding with protein bands in all the venoms tested. Male funnel-web spider venoms (7/7) and female venoms (5110) produced muscle contracture and fasciculation when applied to the nerve-muscle preparation. Venom effects were reversed by subsequent application of FWS AV or prevented by pretreatment of the preparation with antivenom. FWS AV appears to reverse the in vitro toxicity of a number of funnel-web spider venoms from the eastern seaboard of Australia. FWS AV should be effective in the treatment of envenomation from most, if not all, species of Australian funnel-web spiders. (C) 2001 Elsevier Science Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Caveolae are small invaginations of the cell surface that are abundant in mature adipocytes. A recent study (Kanzaki, M., and Pessin, J. E. (2002) J. Biol Chem 277, 25867-25869) described novel caveolin- and actin-containing structures associated with the adipocyte cell surface that contain specific signaling proteins. We have characterized these structures, here termed caves, using light and electron microscopy and observe that they represent surface-connected wide invaginations of the basal plasma membrane that are sometimes many micrometers in diameter. Rather than simply a caveolar domain, these structures contain all elements of the plasma membrane including clathrin-coated pits, lipid raft markers, and non-raft markers. GLUT4 is recruited to caves in response to insulin stimulation. Caves can occupy a significant proportion of the plasma membrane area and are surrounded by cortical actin. Caveolae density in caves is similar to that on the bulk plasma membrane, but because these structures protrude much deeper into the plane of focus of the light microscope molecules such as caveolin and other plasma membrane proteins appear more concentrated in caves. We conclude that the adipocyte surface membrane contains numerous wide invaginations that do not represent novel caveolar structures but rather large surface caves.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Sox8 is a member of the Sox family of developmental transcription factor genes and is closely related to Sox9, a key gene in the testis determination pathway in mammals. Like Sox9, Sox8 is expressed in the developing mouse testis around the time of sex determination, suggesting that it might play a role in regulating the expression of testis-specific genes. An early step in male sex differentiation is the expression of anti-Mullerian hormone (AMH) in Sertoli cells. Expression of the Amh gene during sex differentiation requires the interaction of several transcription factors, including SF1, SOX9, GATA4, WT1, and DAX1. Here we show that SOX8 may also be involved in regulating the expression of Amh. Expression of Sox8 begins just prior to that of Amh at 12 days post coitum (dpc) in mouse testes and continues beyond 16 dpc in Sertoli cells. In vitro assays showed that SOX8 binds specifically to SOX binding sites within the Amh minimal promoter and, like SOX9, acts synergistically with SF1 through direct protein-protein interaction to enhance Amh expression, albeit at lower levels compared with SOX9. SOX8 and SOX9 appear to have arisen from a common ancestral gene and may have retained some common functions during sexual development. Our data provide the first evidence that SOX8 may partially compensate for the reduced SOX9 activity in campomelic dysplasia and substitute for Sox9 where Sox9 is either not expressed or expressed too late to be involved in sex determination or regulation of Amh expression.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Trans-membrane proteins of the p24 family are abundant, oligomeric proteins predominantly found in cis-Golgi membranes. They are not easily studied in vivo and their functions are controversial. We found that p25 can be targeted to the plasma membrane after inactivation of its canonical KKXX motif (KK to SS, p25SS), and that p25SS causes the co-transport of other p24 proteins beyond the Golgi complex, indicating that wild-type p25 plays a crucial role in retaining p24 proteins in cis-Golgi membranes. We then made use of these observations to study the intrinsic properties of these proteins, when present in a different membrane context. At the cell surface, the p25SS mutant segregates away from both the transferrin receptor and markers of lipid rafts, which are enriched in cholesterol and glycosphingolipids. This suggests that p25SS localizes to, or contributes to form, specialized membrane domains, presumably corresponding to oligomers of p25SS and other p24 proteins. Once at the cell surface, p25SS is endocytosed, together with other p24 proteins, and eventually accumulates in late endosomes, where it remains confined to well-defined membrane regions visible by electron microscopy. We find that this p25SS accumulation causes a concomitant accumulation of cholesterol in late endosomes, and an inhibition of their motility - two processes that are functionally linked. Yet, the p25SS-rich regions themselves seem to-exclude not only Lamp1 but also accumulated cholesterol. One may envision that p25SS accumulation, by excluding cholesterol from oligomers, eventually overloads neighboring late endosomal membranes with cholesterol beyond their capacity (see Discussion). In any case, our data show that p25 and presumably other p24 proteins are endowed with the intrinsic capacity to form highly specialized domains that control membrane composition and dynamics. We propose that p25 and other p24 proteins control the fidelity of membrane transport by maintaining cholesterol-poor membranes in the Golgi complex.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In order to establish the relationship between solute lipophilicity and skin penetration (including flux and concentration behavior), we examined the in vitro penetration and membrane concentration of a series of homologous alcohols (C2-C10) applied topically in aqueous solutions to human epidermal, full-thickness, and dermal membranes. The partitioning/distribution of each alcohol between the donor solution, stratum corneum, viable epidermis, dermis, and receptor phase compartments was determined during the penetration process and separately to isolated samples of each tissue type. Maximum flux and permeability coefficients are compared for each membrane and estimates of alcohol diffusivity are made based on flux/concentration data and also the related tissue resistance (the reciprocal of permeability coefficient) for each membrane type. The permeability coefficient increased with increasing lipophilicity to alcohol C8 (octanol) with no further increase for C10 (decanol). Log vehicle:stratum corneum partition coefficients were related to logP , and the concentration of alcohols in each of the tissue layers appeared to increase with lipophilicity. No difference was measured in the diffusivity of smaller more polar alcohols in the three membranes; however, the larger more lipophilic solutes showed slower diffusivity values. The study showed that the dermis may be a much more lipophilic environment than originally believed and that distribution of smaller nonionized solutes into local tissues below a site of topical application may be estimated based on knowledge of their lipophilicity alone.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Ataxia-telangiectasia Mutated (ATM), mutated in the human disorder ataxia-telangiectasia, is rapidly activated by DNA double strand breaks. The mechanism of activation remains unresolved, and it is uncertain whether autophosphorylation contributes to activation. We describe an in vitro immunoprecipitation system demonstrating activation of ATM kinase from unirradiated extracts by preincubation with ATP. Activation is both time- and ATP concentration-dependent, other nucleotides fail to activate ATM, and DNA is not required. ATP activation is specific for ATM since it is not observed with kinase-dead ATM, it requires Mn2+, and it is inhibited by wortmannin. Exposure of activated ATM to phosphatase abrogates activity, and repeat cycles of ATP and phosphatase treatment reveal a requirement for autophosphorylation in the activation process. Phosphopeptide mapping revealed similarities between the patterns of autophosphorylation for irradiated and ATP-treated ATM. Caffeine inhibited ATM kinase activity for substrates but did not interfere with ATM autophosphorylation. ATP failed to activate either A-T and rad3-related protein (ATR) or DNA-dependent protein kinase under these conditions, supporting the specificity for ATM. These data demonstrate that ATP can specifically induce activation of ATM by a mechanism involving autophosphorylation. The relationship of this activation to DNA damage activation remains unclear but represents a useful model for understanding in vivo activation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Subunit vaccines, based on one or more epitopes, offer advantages over whole vaccines in terms of safety but are less antigenic. We investigated whether fusion of the cytokine interleukin-2 (IL-2) to influenza-derived subunit antigens could increase their antigenicity. The fusion of IL-2 to the subunit antigens increased their antigenicity in vitro. Encapsulation of the subunit antigen in liposomes also increased its antigenicity in vitro, yet encapsulation of the subunit IL-2 fusion did not. The use of anti-IL-2 receptor beta (IL-2Rbeta) antibody to block the receptor subunit on macrophages suggested that the adjuvancy exerted by IL-2 in our in vitro system is due to, at least in part, a previously unreported IL-2Rbeta-mediated antigen uptake mechanism.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The use of extracellular matrix materials as scaffolds for the repair and regeneration of tissues is receiving increased attention. The current study was undertaken to test whether extracellular matrix formed by osteoblasts in vitro could be used as a scaffold for osteoblast transplantation and induce new bone formation in critical size osseous defects in vivo. Human osteoblasts derived from alveolar bone were cultured in six-well plates until confluent and then in mineralization media for a further period of 3 weeks to form an osteoblast-mineralized matrix complex. Histologically, at this time point a tissue structure with a connective tissue-like morphology was formed. Type I collagen was the major extracellular component present and appeared to determine the matrix macrostructure. Other bone-related proteins such as alkaline phosphatase (ALP), bone morphogenetic protein (BMP)-2 and -4, bone sialoprotein (BSP), osteopontin (OPN), and osteocalcin (OCN) also accumulated in the matrix. The osteoblasts embedded in this matrix expressed mRNAs for these bone-related proteins very strongly. Nodules of calcification were detected in the matrix and there was a correlation between calcification and the distribution of BSP and OPN. When this matrix was transplanted into a critical size bone defect in skulls of inummodeficient mice (SCID), new bone formation occurred. Furthermore, the cells inside the matrix survived and proliferated in the recipient sites, and were traceable by the human-specific Alu gene sequence using in situ hybridization. It was found that bone-forming cells differentiated from both transplanted human osteoblasts and activated endogenous mesenchymal cells. This study indicates that a mineralized matrix, formed by human osteoblasts in vitro, can be used as a scaffold for osteoblast transplantation, which subsequently can induce new bone formation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Reasons for performing study: Acute laminitis is characterised by hoof lamellar dermal-epidermal separation at the basement membrane (BM) zone. Hoof lamellar explants cultured in vitro can also be made to separate at the basement membrane zone and investigating how this occurs may give insight into the poorly understood pathophysiology of laminitis. Objectives: To investigate why glucose deprivation and metalloproteinase (MMP) activation in cultured lamellar explants leads to dermo-epidermal separation. Methods: Explants, cultured without glucose or with the MMP activator p-amino-phenol-mercuric acetate (APMA), were subjected to tension and processed for transmission electron microscopy (TEM). Results: Without glucose, or with APMA, explants under tension separated at the dermo-epidermal junction. This in vitro separation occurred via 2 different ultrastructural processes. Lack of glucose reduced hemidesmosomes (HDs) numbers until they disappeared and the basal cell cytoskeleton collapsed. Anchoring filaments (AFs), connecting the basal cell plasmalemma to the BM, were unaffected although they failed under tension. APMA activation of constituent lamellar MMPs did not affect HDs but caused AFs to disappear, also leading to dermo-epidermal separation under tension. Conclusions: Natural laminitis may occur in situations where glucose uptake by lamellar basal cells is compromised (e.g. equine Cushing's disease, obesity, hyperlipaemia, ischaemia and septicaemia) or when lamellar MMPs are activated (alimentary carbohydrate overload). Potential relevance: Therapies designed to facilitate peripheral glucose uptake and inhibit lamellar MMP activation may prevent or ameliorate laminitis.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Objective-To investigate in vitro transdermal absorption of fentanyl from patches through skin samples obtained from various anatomic regions of dogs. Sample Population-Skin samples from 5 Greyhounds. Procedure-Skin samples from the dogs' thoracic, neck, and groin regions were collected postmortem and frozen. After samples were thawed, circular sections were cut and placed in Franz-type diffusion cells in a water bath (32degreesC). A commercial fentanyl patch, attached to an acetate strip with a circular hole, was applied to each skin sample. Cellulose strips were used as control membranes. Samples of receptor fluid in the diffusion cells were collected at intervals for 48 hours, and fentanyl concentrations were analyzed by use of high-performance liquid chromatography. Results-Mean +/- SD release rate of fentanyl from the patch, defined by its absorption rate through the non-rate-limiting cellulose membrane, was linear during the first 8 hours (2.01 +/- 0.05 pg/cm(2) of cellulose membrane/h) and then decreased. Fentanyl passed through skin from the groin region at a faster rate and with a significantly shorter lag time, compared with findings in neck or thoracic skin samples. Conclusions and Clinical Relevance-In vitro, fentanyl from a patch was absorbed more quickly and to a greater extent through skin collected from the groin region of dogs, compared with skin samples from the thoracic and neck regions. Placement of fentanyl patches in the groin region of dogs may decrease the lag time to achieve analgesia perioperatively; however, in vivo studies are necessary to confirm these findings.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We studied an in vitro model of continuous venous-venous haemofiltration (CVVH), into which levofloxacin 100 mg was infused, to determine levofloxacin adsorption and to determine the effect of filter material and point of dilution (pre- or post-filter) on sieving coefficient. Mean (standard deviation; S.D.) adsorption was 18.7 (5.3) mg for the polyamide filter and 40.2 (2.0) mg for the polyacrylonitrile (PAN) filter (P < 0.001). Post-dilution resulted in a minor, but statistically significant, decrease in sieving coefficient (pre-dilution 0.96 (S.D. 0.10), post-dilution 0.88 (S.D. 0.11) with the PAN filter. These data indicate that the variability in published values for levofloxacin sieving coefficient are not due to variation in point of dilution or membrane type (PAN or polyamide). Significant adsorption of levofloxacin onto PAN filters occurs. (C) 2004 Elsevier B.V. and the International Society of Chemotherapy. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Investigations into pigment cell biology have relied on the ability to culture both murine and human melanocytes, numerous melanoma cell lines and more recently, murine and human melanoblasts. Melanoblast culture requires medium supplemented with a range of growth factors including Stem Cell Factor, Endothelin-3 and Fibroblast Growth Factor-2, withdrawal of which causes the cells to differentiate into melanocytes. Using the human melanoblast culture system, we have now examined the expression and/or DNA binding activity of several transcription factors implicated in melanocytic development and differentiation. Of these, the POU domain factor BRN2 and the SOX family member SOX10 are both highly expressed in unpigmented melanocyte precursors but are down-regulated upon differentiation. In contrast, the expression levels of the previously described MITF and PAX3 transcription factors remain relatively constant during the melanoblast-melanocyte transition. Moreover, BRN2 ablated melanoma cells lack expression of SOX10 and MITF but retain PAX3. A novel finding implicates a second SOX protein, SOX9, as a potential melanogenic transcriptional regulator, as its expression level is increased following the down-regulation of BRN2 and SOX10 in differentiated melanoblasts. Our results suggest that a complex network of transcription factor interactions requiring proper temporal coordination is necessary for acquisition and maintenance of the melanocytic phenotype. (c) 2005 Elsevier Inc. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In vitro measurements of skin absorption are an increasingly important aspect of regulatory studies, product support claims, and formulation screening. However, such measurements are significantly affected by skin variability. The purpose of this study was to determine inter- and intralaboratory variation in diffusion cell measurements caused by factors other than skin. This was attained through the use of an artificial (silicone rubber) rate-limiting membrane and the provision of materials including a standard penetrant, methyl paraben (MP), and a minimally prescriptive protocol to each of the 18 participating laboratories. Standardized calculations of MP flux were determined from the data submitted by each laboratory by applying a predefined mathematical model. This was deemed necessary to eliminate any interlaboratory variation caused by different methods of flux calculations. Average fluxes of MP calculated and reported by each laboratory (60 +/- 27 mug cm(-2) h(-1), n = 25, range 27-101) were in agreement with the standardized calculations of MP flux (60 +/- 21 mug cm(-2) h(-1), range 19-120). The coefficient of variation between laboratories was approximately 35% and was manifest as a fourfold difference between the lowest and highest average flux values and a sixfold difference between the lowest and highest individual flux values. Intra-laboratory variation was lower, averaging 10% for five individuals using the same equipment within a single laboratory. Further studies should be performed to clarify the exact components responsible for nonskin-related variability in diffusion cell measurements. It is clear that further developments of in vitro methodologies for measuring skin absorption are required. (C) 2005 Wiley-Liss, Inc.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A T cell antigen receptor (TCR) transmembrane sequence derived peptide (CP) has been shown to inhibit T cell activation both in vitro and in vivo at the membrane level of the receptor signal transduction. To examine the effect of sugar or lipid conjugations on CP function, we linked CP to 1-aminoglucosesuccinate (GS), N-myristate (MYR), mono-di-tripalmitate (LP1, LP2, or LP3), and a lipoamino acid (LA) and examined the effects of these compounds on T cell activation in vitro and by using a rat model of adjuvant-induced arthritis, in vivo. In vitro, antigen presentation results demonstrated that lipid conjugation enhanced CP's ability to lower IL-2 production from 56.99% +/- 15.69 S.D. observed with CP, to 12.08% +/- 3.34 S.D. observed with LA. The sugar conjugate GS resulted in only a mild loss of in vitro activity compared to CP (82.95% +/- 14.96 S.D.). In vivo, lipid conjugation retarded the progression of adjuvant-induced arthritis by approximately 50%, whereas the sugar. conjugated CP, GS, almost completely inhibited the progression of arthritis. This study demonstrates that hydrophobic peptide activity is markedly enhanced in vitro and in vivo by conjugation to lipids or sugars. This may have practical applications in drug delivery and bioavailability of hydrophobic peptides. (c) 2006 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Studies were performed to investigate the UDP-glucuronosyltransferase enzyme( s) responsible for the human liver microsomal N2-glucuronidation of the anticonvulsant drug lamotrigine ( LTG) and the mechanistic basis for the LTG-valproic acid ( VPA) interaction in vivo. LTG N2-glucuronidation by microsomes from five livers exhibited atypical kinetics, best described by a model comprising the expressions for the Hill ( 1869 +/- 1286 mu M, n = 0.65 +/- 0.16) and Michaelis-Menten ( Km 2234 +/- 774 mu M) equations. The UGT1A4 inhibitor hecogenin abolished the Michaelis-Menten component, without affecting the Hill component. LTG N2-glucuronidation by recombinant UGT1A4 exhibited Michaelis-Menten kinetics, with a K-m of 1558 mu M. Although recombinant UGT2B7 exhibited only low activity toward LTG, inhibition by zidovudine and fluconazole and activation by bovine serum albumin ( BSA) ( 2%) strongly suggested that this enzyme was responsible for the Hill component of microsomal LTG N2-glucuronidation. VPA ( 10 mM) abolished the Hill component of microsomal LTG N2-glucuronidation, without affecting the Michaelis-Menten component or UGT1A4-catalyzed LTG metabolism. K-i values for inhibition of the Hill component of LTG N2-glucuronidation by VPA were 2465 +/- 370 mu M and 387 +/- 12 mu M in the absence and presence, respectively, of BSA ( 2%). Consistent with published data for the effect of fluconazole on zidovudine glucuronidation by human liver microsomal UGT2B7, the Ki value generated in the presence of BSA predicted the magnitude of the LTG-VPA interaction reported in vivo. These data indicate that UGT2B7 and UGT1A4 are responsible for the Hill and Michaelis-Menten components, respectively, of microsomal LTG N2-glucuronidation, and the LTG-VPA interaction in vivo arises from inhibition of UGT2B7.