36 resultados para Mechanical pulp


Relevância:

20.00% 20.00%

Publicador:

Resumo:

It is currently unclear whether it is the need to maintain metabolic efficiency, the need to keep skeletal loading below critical force levels, or simple mechanical factors that drive the walk-to-run (W R) and run-to-walk (R-W) transitions in human gait. Eighteen adults (9 males and 9 females) locomoted on an instrumented treadmill using their preferred gait. Each completed 2 ascending (W-R) and 2 descending (R-W) series of trials under three levels of loading (0%, 15% and 30% body weight). For each trial, participants locomoted for 60 s at each of 9 different speeds -4 speeds both above and below their preferred transition speed (PTS) plus their PTS. Evidence was sought for critical levels of key kinetic (maximum vertical force, impulse, first peak force, time to first peak force and maximum loading rate), energetic (oxygen consumption, transport cost) and mechanical variables (limb lengths, strength) predictive of the gait transition. Analyses suggested the kinetic variables of time to first peak force and loading rate as the most likely determinants of the W-R and R-W transitions. (C) 2003 Elsevier Science B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Survival of bone marrow transplant recipients requiting mechanical ventilation is poor but improving. This study reports a retrospective audit of all haematopoietic stem cell transplant (HSCT) recipients requiring mechanical ventilation at an Australian institution over a period spanning 11 years from 1988 to 1998. Recipients of autologous transplants are significantly less likely to require mechanical ventilation than recipients of allogeneic transplants. Of 50 patients requiring mechanical ventilation, 28% survived to discharge from the intensive care unit, 20% to 30 days post-ventilation, 18% to discharge from hospital and 12% to six months post-ventilation. Risk factors for mortality in the HSCT recipient requiting mechanical ventilation include renal, hepatic and cardiovascular insufficiency and greater severity of illness. Mechanical ventilation of HSCT recipients should not be regarded as futile therapy.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Pulp lifters, also known, as pan lifters are an integral part of the majority of autogenous (AG), semi-autogenous (SAG) and grate discharge ball mills. The performance of the pulp lifters in conjunction with grate design determines the ultimate flow capacity of these mills. Although the function of the pulp lifters is simply to transport the slurry passed through the discharge grate into the discharge trunnion, their performance depends on their design as well as that of the grate and operating conditions such as mill speed and charge level. However, little or no work has been reported on the performance of grate-pulp lifter assemblies and in particular the influence of pulp lifter design on slurry transport. Ideally, the discharge rate through a grate-pulp lifter assembly should be equal to the discharge rate through at a given mill hold-up. However, the results obtained have shown that conventional pulp lifter designs cause considerable restrictions to flow resulting in reduced flow capacity. In this second of a two-part series of papers the performance of conventional pulp lifters (radial and spiral designs) is described and is based on extensive test work carried out in a I m diameter pilot SAG mill. (C) 2003 Elsevier Science Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper, we examine the postbuckling behavior of functionally graded material FGM rectangular plates that are integrated with surface-bonded piezoelectric actuators and are subjected to the combined action of uniform temperature change, in-plane forces, and constant applied actuator voltage. A Galerkin-differential quadrature iteration algorithm is proposed for solution of the non-linear partial differential governing equations. To account for the transverse shear strains, the Reddy higher-order shear deformation plate theory is employed. The bifurcation-type thermo-mechanical buckling of fully clamped plates, and the postbuckling behavior of plates with more general boundary conditions subject to various thermo-electro-mechanical loads, are discussed in detail. Parametric studies are also undertaken, and show the effects of applied actuator voltage, in-plane forces, volume fraction exponents, temperature change, and the character of boundary conditions on the buckling and postbuckling characteristics of the plates. (C) 2003 Elsevier Science Ltd. All rights reserved.