34 resultados para Maximal Functions
Resumo:
Cropp and Gabric [Ecosystem adaptation: do ecosystems maximise resilience? Ecology. In press] used a simple phytoplanktonzooplankton-nutrient model and a genetic algorithm to determine the parameter values that would maximize the value of certain goal functions. These goal functions were to maximize biomass, maximize flux, maximize flux to biomass ratio, and maximize resilience. It was found that maximizing goal functions maximized resilience. The objective of this study was to investigate whether the Cropp and Gabric [Ecosystem adaptation: do ecosystems maximise resilience? Ecology. In press] result was indicative of a general ecosystem principle, or peculiar to the model and parameter ranges used. This study successfully replicated the Cropp and Gabric [Ecosystem adaptation: do ecosystems maximise resilience? Ecology. In press] experiment for a number of different model types, however, a different interpretation of the results is made. A new metric, concordance, was devised to describe the agreement between goal functions. It was found that resilience has the highest concordance of all goal functions trialled. for most model types. This implies that resilience offers a compromise between the established ecological goal functions. The parameter value range used is found to affect the parameter versus goal function relationships. Local maxima and minima affected the relationship between parameters and goal functions, and between goal functions. (C) 2003 Elsevier B.V. All rights reserved.
Resumo:
The aim of this study was to compare the effects of two high-intensity, treadmill interval-training programs on 3000-m and 5000-m running performance. Maximal oxygen uptake ((V) over dot O-2max), the running speed associated with (V) over dot O-2max (nu (V) over dot O-2max), the time for which nu (V) over dot O-2max can be maintained (T-max), running economy (RE), ventilatory threshold (VT) and 3000-m and 5000-m running times were determined in 27 well-trained runners. Subjects were then randomly assigned to three groups; (1) 60% T-max (2) 70% T-max and (3) control. Subjects in the control group continued their normal training and subjects in the two T-max groups undertook a 4-week treadmill interval-training program with the intensity set at nu (V) over dot O-2max and the interval duration at the assigned T-max. These subjects completed two interval-training sessions per week (60% T-max = six intervals/session, 70% T-max group = five intervals/session). Subjects were re-tested on all parameters at the completion of the training program. There was a significant improvement between pre- and post-training values in 3000-m time trial (TT) performance in the 60% T-max group compared to the 70% T,,a, and control groups [mean (SE); 60% T-max = 17.6 (3.5) s, 70% T-max = 6.3 (4.2) s, control = 0.5 (7.7) s]. There was no significant effect of the training program on 5000-m TT performance [60% T-max = 25.8 (13.8) s, 70% T-max = 3.7 (11.6) s, control = 9.9 (13.1) s]. Although there were no significant improvements in (V) over dot O-2max, nu (V) over dot (2max) and RE between groups, changes in (V) over dot O-2max and RE were significantly correlated with the improvement in the 3000-m TT. Furthermore, VT and T-max were significantly higher in the 60% Tmax group post-compared to pre-training. In conclusion, 3000-m running performance can be significantly improved in a group of well-trained runners, using a 4-week treadmill interval training program at nu (V) over dot O-2max with interval durations of 60% T-max.
Resumo:
Deterioration of concrete or reinforcing steel through excessive contaminant concentration is often the result of repeated wetting and drying cycles. At each cycle, the absorption of water carries new contaminants into the unsaturated concrete. Nuclear Magnetic Resonance (NMR) is used with large concrete samples to observe the shape of the wetting profile during a simple one-dimensional wetting process. The absorption of water by dry concrete is modelled by a nonlinear diffusion equation with the unsaturated hydraulic diffusivity being a strongly nonlinear function of the moisture content. Exponential and power functions are used for the hydraulic diffusivity and corresponding solutions of the diffusion equation adequately predict the shape of the experimental wetting profile. The shape parameters, describing the wetting profile, vary little between different blends and are relatively insensitive to subsequent re-wetting experiments allowing universal parameters to be suggested for these concretes.
Resumo:
In this paper we present a technique for visualising hierarchical and symmetric, multimodal fitness functions that have been investigated in the evolutionary computation literature. The focus of this technique is on landscapes in moderate-dimensional, binary spaces (i.e., fitness functions defined over {0, 1}(n), for n less than or equal to 16). The visualisation approach involves an unfolding of the hyperspace into a two-dimensional graph, whose layout represents the topology of the space using a recursive relationship, and whose shading defines the shape of the cost surface defined on the space. Using this technique we present case-study explorations of three fitness functions: royal road, hierarchical-if-and-only-if (H-IFF), and hierarchically decomposable functions (HDF). The visualisation approach provides an insight into the properties of these functions, particularly with respect to the size and shape of the basins of attraction around each of the local optima.