41 resultados para Maximal Compact Frames


Relevância:

20.00% 20.00%

Publicador:

Resumo:

With rapid advances in video processing technologies and ever fast increments in network bandwidth, the popularity of video content publishing and sharing has made similarity search an indispensable operation to retrieve videos of user interests. The video similarity is usually measured by the percentage of similar frames shared by two video sequences, and each frame is typically represented as a high-dimensional feature vector. Unfortunately, high complexity of video content has posed the following major challenges for fast retrieval: (a) effective and compact video representations, (b) efficient similarity measurements, and (c) efficient indexing on the compact representations. In this paper, we propose a number of methods to achieve fast similarity search for very large video database. First, each video sequence is summarized into a small number of clusters, each of which contains similar frames and is represented by a novel compact model called Video Triplet (ViTri). ViTri models a cluster as a tightly bounded hypersphere described by its position, radius, and density. The ViTri similarity is measured by the volume of intersection between two hyperspheres multiplying the minimal density, i.e., the estimated number of similar frames shared by two clusters. The total number of similar frames is then estimated to derive the overall similarity between two video sequences. Hence the time complexity of video similarity measure can be reduced greatly. To further reduce the number of similarity computations on ViTris, we introduce a new one dimensional transformation technique which rotates and shifts the original axis system using PCA in such a way that the original inter-distance between two high-dimensional vectors can be maximally retained after mapping. An efficient B+-tree is then built on the transformed one dimensional values of ViTris' positions. Such a transformation enables B+-tree to achieve its optimal performance by quickly filtering a large portion of non-similar ViTris. Our extensive experiments on real large video datasets prove the effectiveness of our proposals that outperform existing methods significantly.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

One of critical challenges in automatic recognition of TV commercials is to generate a unique, robust and compact signature. Uniqueness indicates the ability to identify the similarity among the commercial video clips which may have slight content variation. Robustness means the ability to match commercial video clips containing the same content but probably with different digitalization/encoding, some noise data, and/or transmission and recording distortion. Efficiency is about the capability of effectively matching commercial video sequences with a low computation cost and storage overhead. In this paper, we present a binary signature based method, which meets all the three criteria above, by combining the techniques of ordinal and color measurements. Experimental results on a real large commercial video database show that our novel approach delivers a significantly better performance comparing to the existing methods.