49 resultados para Machine Learning,Deep Learning,Convolutional Neural Networks,Image Classification,Python


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Machine learning techniques have been recognized as powerful tools for learning from data. One of the most popular learning techniques, the Back-Propagation (BP) Artificial Neural Networks, can be used as a computer model to predict peptides binding to the Human Leukocyte Antigens (HLA). The major advantage of computational screening is that it reduces the number of wet-lab experiments that need to be performed, significantly reducing the cost and time. A recently developed method, Extreme Learning Machine (ELM), which has superior properties over BP has been investigated to accomplish such tasks. In our work, we found that the ELM is as good as, if not better than, the BP in term of time complexity, accuracy deviations across experiments, and most importantly - prevention from over-fitting for prediction of peptide binding to HLA.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper is concerned with the use of scientific visualization methods for the analysis of feedforward neural networks (NNs). Inevitably, the kinds of data associated with the design and implementation of neural networks are of very high dimensionality, presenting a major challenge for visualization. A method is described using the well-known statistical technique of principal component analysis (PCA). This is found to be an effective and useful method of visualizing the learning trajectories of many learning algorithms such as back-propagation and can also be used to provide insight into the learning process and the nature of the error surface.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The long short-term memory (LSTM) is not the only neural network which learns a context sensitive language. Second-order sequential cascaded networks (SCNs) are able to induce means from a finite fragment of a context-sensitive language for processing strings outside the training set. The dynamical behavior of the SCN is qualitatively distinct from that observed in LSTM networks. Differences in performance and dynamics are discussed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Foreign exchange trading has emerged recently as a significant activity in many countries. As with most forms of trading, the activity is influenced by many random parameters so that the creation of a system that effectively emulates the trading process will be very helpful. A major issue for traders in the deregulated Foreign Exchange Market is when to sell and when to buy a particular currency in order to maximize profit. This paper presents novel trading strategies based on the machine learning methods of genetic algorithms and reinforcement learning.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Objective: Inpatient length of stay (LOS) is an important measure of hospital activity, health care resource consumption, and patient acuity. This research work aims at developing an incremental expectation maximization (EM) based learning approach on mixture of experts (ME) system for on-line prediction of LOS. The use of a batchmode learning process in most existing artificial neural networks to predict LOS is unrealistic, as the data become available over time and their pattern change dynamically. In contrast, an on-line process is capable of providing an output whenever a new datum becomes available. This on-the-spot information is therefore more useful and practical for making decisions, especially when one deals with a tremendous amount of data. Methods and material: The proposed approach is illustrated using a real example of gastroenteritis LOS data. The data set was extracted from a retrospective cohort study on all infants born in 1995-1997 and their subsequent admissions for gastroenteritis. The total number of admissions in this data set was n = 692. Linked hospitalization records of the cohort were retrieved retrospectively to derive the outcome measure, patient demographics, and associated co-morbidities information. A comparative study of the incremental learning and the batch-mode learning algorithms is considered. The performances of the learning algorithms are compared based on the mean absolute difference (MAD) between the predictions and the actual LOS, and the proportion of predictions with MAD < 1 day (Prop(MAD < 1)). The significance of the comparison is assessed through a regression analysis. Results: The incremental learning algorithm provides better on-line prediction of LOS when the system has gained sufficient training from more examples (MAD = 1.77 days and Prop(MAD < 1) = 54.3%), compared to that using the batch-mode learning. The regression analysis indicates a significant decrease of MAD (p-value = 0.063) and a significant (p-value = 0.044) increase of Prop(MAD

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Pac-Man is a well-known, real-time computer game that provides an interesting platform for research. We describe an initial approach to developing an artificial agent that replaces the human to play a simplified version of Pac-Man. The agent is specified as a simple finite state machine and ruleset. with parameters that control the probability of movement by the agent given the constraints of the maze at some instant of time. In contrast to previous approaches, the agent represents a dynamic strategy for playing Pac-Man, rather than a pre-programmed maze-solving method. The agent adaptively "learns" through the application of population-based incremental learning (PBIL) to adjust the agents' parameters. Experimental results are presented that give insight into some of the complexities of the game, as well as highlighting the limitations and difficulties of the representation of the agent.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Recovering position from sensor information is an important problem in mobile robotics, known as localisation. Localisation requires a map or some other description of the environment to provide the robot with a context to interpret sensor data. The mobile robot system under discussion is using an artificial neural representation of position. Building a geometrical map of the environment with a single camera and artificial neural networks is difficult. Instead it would be simpler to learn position as a function of the visual input. Usually when learning images, an intermediate representation is employed. An appropriate starting point for biologically plausible image representation is the complex cells of the visual cortex, which have invariance properties that appear useful for localisation. The effectiveness for localisation of two different complex cell models are evaluated. Finally the ability of a simple neural network with single shot learning to recognise these representations and localise a robot is examined.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Recent work by Siegelmann has shown that the computational power of recurrent neural networks matches that of Turing Machines. One important implication is that complex language classes (infinite languages with embedded clauses) can be represented in neural networks. Proofs are based on a fractal encoding of states to simulate the memory and operations of stacks. In the present work, it is shown that similar stack-like dynamics can be learned in recurrent neural networks from simple sequence prediction tasks. Two main types of network solutions are found and described qualitatively as dynamical systems: damped oscillation and entangled spiraling around fixed points. The potential and limitations of each solution type are established in terms of generalization on two different context-free languages. Both solution types constitute novel stack implementations - generally in line with Siegelmann's theoretical work - which supply insights into how embedded structures of languages can be handled in analog hardware.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this letter, we propose a class of self-stabilizing learning algorithms for minor component analysis (MCA), which includes a few well-known MCA learning algorithms. Self-stabilizing means that the sign of the weight vector length change is independent of the presented input vector. For these algorithms, rigorous global convergence proof is given and the convergence rate is also discussed. By combining the positive properties of these algorithms, a new learning algorithm is proposed which can improve the performance. Simulations are employed to confirm our theoretical results.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We present an application of Mathematical Morphology (MM) for the classification of astronomical objects, both for star/galaxy differentiation and galaxy morphology classification. We demonstrate that, for CCD images, 99.3 +/- 3.8% of galaxies can be separated from stars using MM, with 19.4 +/- 7.9% of the stars being misclassified. We demonstrate that, for photographic plate images, the number of galaxies correctly separated from the stars can be increased using our MM diffraction spike tool, which allows 51.0 +/- 6.0% of the high-brightness galaxies that are inseparable in current techniques to be correctly classified, with only 1.4 +/- 0.5% of the high-brightness stars contaminating the population. We demonstrate that elliptical (E) and late-type spiral (Sc-Sd) galaxies can be classified using MM with an accuracy of 91.4 +/- 7.8%. It is a method involving fewer 'free parameters' than current techniques, especially automated machine learning algorithms. The limitation of MM galaxy morphology classification based on seeing and distance is also presented. We examine various star/galaxy differentiation and galaxy morphology classification techniques commonly used today, and show that our MM techniques compare very favourably.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The eye-blink startle reflex can be modulated by attentional and emotional processes. The reflex is facilitated during stimuli that engage attention. A linear pattern of emotional modulation has also been consistently demonstrated: the reflex is facilitated during unpleasant stimuli and attenuated during pleasant stimuli. However, during anticipation of pleasant or unpleasant stimuli it is unclear whether emotion or attention drives startle reflex modulation. This study used a differential learning procedure to investigate whether startle modulation during anticipation of a salient stimulus reflected emotional or attentional processes. In acquisition, a CS+ was paired with a pleasant or unpleasant US and a CS- was presented alone. In extinction, blink startle magnitude was measured during CS+ and CS-. Post-acquisition valence ratings and affective priming showed that CS+ had acquired the same affective value as the pleasant or unpleasant US with which it was paired. No differences in modulation of blink startle reflexes during pleasant CS+ and unpleasant CS+ were found throughout extinction. Blink startle facilitation occurred during CS+ but not CS- across the first third of extinction. Thus, attentional rather than emotional processes appeared to facilitate blink startle during anticipation of salient stimuli.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

As an alternative to traditional evolutionary algorithms (EAs), population-based incremental learning (PBIL) maintains a probabilistic model of the best individual(s). Originally, PBIL was applied in binary search spaces. Recently, some work has been done to extend it to continuous spaces. In this paper, we review two such extensions of PBIL. An improved version of the PBIL based on Gaussian model is proposed that combines two main features: a new updating rule that takes into account all the individuals and their fitness values and a self-adaptive learning rate parameter. Furthermore, a new continuous PBIL employing a histogram probabilistic model is proposed. Some experiments results are presented that highlight the features of the new algorithms.

Relevância:

100.00% 100.00%

Publicador: