216 resultados para MUSCLE POWER OUTPUT
Resumo:
The country-product-dummy (CPD) method, originally proposed in Summers (1973), has recently been revisited in its weighted formulation to handle a variety of data related situations (Rao and Timmer, 2000, 2003; Heravi et al., 2001; Rao, 2001; Aten and Menezes, 2002; Heston and Aten, 2002; Deaton et al., 2004). The CPD method is also increasingly being used in the context of hedonic modelling instead of its original purpose of filling holes in Summers (1973). However, the CPD method is seen, among practitioners, as a black box due to its regression formulation. The main objective of the paper is to establish equivalence of purchasing power parities and international prices derived from the application of the weighted-CPD method with those arising out of the Rao-system for multilateral comparisons. A major implication of this result is that the weighted-CPD method would then be a natural method of aggregation at all levels of aggregation within the context of international comparisons.
Resumo:
Recent empirical studies have found significant evidence of departures from competition in the input side of the Australian bread, breakfast cereal and margarine end-product markets. For example, Griffith (2000) found that firms in some parts of the processing and marketing sector exerted market power when purchasing grains and oilseeds from farmers. As noted at the time, this result accorded well with the views of previous regulatory authorities (p.358). In the mid-1990s, the Prices Surveillence Authority (PSA 1994) determined that the markets for products contained in the Breakfast Cereals and Cooking Oils and Fats indexes were "not effectively competitive" (p.14). The PSA consequently maintained price surveillence on the major firms in this product group. The Griffith result is also consistent with the large number of legal judgements against firms in this sector over the past decade for price fixing or other types of non-competitive behaviour. For example, bread manufacturer George Weston was fined twice during 2000 for non-competitive conduct and the ACCC has also recently pursued and won cases against retailer Safeway in grains and oilseeds product lines.
Resumo:
In the present study we investigated tension regulation in the human soleus (SOL) muscle during controlled lengthening and shortening actions. Eleven subjects performed plantar flexor efforts on an ankle torque motor through 30 degrees of ankle displacement (75 degrees-105 degrees internal ankle angle) at lengthening and shortening velocities of 5, 15 and 30 degrees s(-1). To isolate the SOL from the remainder of the triceps surae, the subject's knee was flexed to 60 degrees during all trials. Voluntary plantar flexor efforts were performed under two test conditions: (1) maximal voluntary activation (MVA) of the SOL, and (2) constant submaximal voluntary activation (SVA) of the SOL. SVA trials were performed with direct visual feedback of the SOL electromyogram (EMG) at a level resulting in a torque output of 30% of isometric maximum. Angle-specific (90 degrees ankle angle) torque and EMG of the SOL, medial gastrocnemius (MG) and tibialis anterior (TA) were recorded. In seven subjects from the initial group, the test protocol was repeated under submaximal percutaneous electrical activation (SEA) of SOL (to 30% isometric maximal effort). Lengthening torques were significantly greater than shortening torques in all test conditions. Lengthening torques in MVA and SVA were independent of velocity and remained at the isometric level, whereas SEA torques were greater than isometric torques and increased at higher lengthening velocities. Shortening torques were lower than the isometric level for all conditions. However, whereas SVA and SEA torques decreased at higher velocities of shortening, MVA torques were independent of velocity. These results indicate velocity- and activation-type-specific tension regulation in the human SOL muscle.
Resumo:
The purpose of this experiment was to assess the test-retest reliability of input-output parameters of the cortico-spinal pathway derived from transcranial magnetic (TMS) and electrical (TES) stimulation at rest and during muscle contraction. Motor evoked potentials (MEPs) were recorded from the first dorsal interosseous muscle of eight individuals on three separate days. The intensity of TMS at rest was varied from 5% below threshold to the maximal output of the stimulator. During trials in which the muscle was active, TMS and TES intensities were selected that elicited MEPs of between 150 and 300 X at rest. MEPs were evoked while the participants exerted torques up to 50% of their maximum capacity. The relationship between MEP size and stimulus intensity at rest was sigmoidal (R-2 = 0.97). Intra-class correlation coefficients (ICC) ranged between 0.47 and 0.81 for the parameters of the sigmoid function. For the active trials, the slope and intercept of regression equations of MEP size on level of background contraction were obtained more reliably for TES (ICC = 0.63 and 0.78, respectively) than for TMS (ICC = 0.50 and 0.53, respectively), These results suggest that input-output parameters of the cortico-spinal pathway may be reliably obtained via transcranial stimulation during longitudinal investigations of cortico-spinal plasticity. (C) 2001 Elsevier Science B.V. All rights reserved.
Resumo:
Study Design. A cross-sectional case-control study. Objectives. To examine the effect of fatigue on torque output as well as electromyographic frequency and amplitude values of trunk muscles during isometric axial rotation exertion in back pain patients and to compare the results with a matched control group. Summary of Background Data. Back pain patients exhibited different activation strategies in trunk muscles during the axial rotation exertions. Fatigue changes of abdominal and back muscles during axial rotation exertion have not been examined in patients with back pain. Methods. Twelve back pain patients and 12 matched controls performed isometric fatiguing axial rotation to both sides at 80% maximum voluntary contraction in a standing position. During the fatiguing exertion, electromyographic changes of rectus abdominis, external oblique, internal oblique, latissimus dorsi, iliocostalis lumborum, and multifidus were recorded bilaterally. The primary torque in the transverse plane and the coupling torques in sagittal and coronal planes were also measured. Results. No difference in the endurance capacity was found between back pain and control groups. At the initial period of the exertion, back pain patients demonstrated a statistical trend (P = 0.058) of greater sagittal coupling torque as well as lower activity of rectus abdominis and multifidus and higher activity in external oblique. During the fatigue process similar changes of coupling torque were demonstrated in both sagittal and coronal planes, but a smaller fatigue rate for right external oblique, increase in median frequency for latissimus dorsi, and lesser increase in activity for back muscles were found in the back pain group compared with the control group. Conclusions. Alterations in electromyographic activation and fatigue rates of abdominal and back muscles demonstrated during the fatigue process provide insights into the muscle dysfunctions in back pain and may help clinicians to devise more rational treatment strategies.
Resumo:
Abnormal patterns of trunk muscle activity could affect the biomechanics of spinal movements and result in back pain. The present study aimed to examine electromyographic (EMG) activity of abdominal and back muscles as well as triaxial torque output during isometric axial rotation at different exertion levels in back pain patients and matched controls. Twelve back pain patients and 12 matched controls performed isometric right and left axial rotation at 100%, 70%, 50%, and 30% maximum voluntary contractions in a standing position. Surface EMG activity of rectus abdominis, external oblique, internal oblique, latissimus dorsi, iliocostalis lumborum and multifidus were recorded bilaterally. The primary torque in the transverse plane and the coupling torques in sagittal and coronal planes were measured. Results showed that there was a trend (P = 0.08) of higher flexion coupling torque during left axial rotation exertion in back pain patients. Higher activity for external oblique and lower activity for multifidus was shown during left axial rotation exertion in back pain group when compared to the control group. In right axial rotation, back pain patients exhibited lesser activity of rectus abdominis at higher levels of exertion when compared with matched controls. These findings demonstrated that decreased activation of one muscle may be compensated by overactivity in other muscles. The reduced levels of activity of the multifidus muscle during axial rotation exertion in back pain patients may indicate that spinal stability could be compromised. Future studies should consider these alternations in recruitment patterns in terms of spinal stability and internal loading. The findings also indicate the importance of training for coordination besides the strengthening of trunk muscles during rehabilitation process. (C) 2002 Orthopaedic Research Society. Published by Elsevier Science Ltd. All rights reserved.
Resumo:
Objective: The aim of the present study was to investigate the between-days reliability of electromyographic (EMG) measurement of 6 bilateral trunk muscles and also the torque output in 3 planes during isometric right and left axial rotation at different exertion levels. Methods: Ten healthy subjects performed isometric right and left axial rotation at 100, 70, 50 and 30% maximum voluntary contractions in two testing sessions at least 7 days apart. EMG amplitude and frequency analyses of the recorded surface EMG signals were performed for rectus abdominis, external oblique, internal oblique, latissimus dorsi, iliocostalis lumborum and multifidus bilaterally. The primary torque in the transverse plane and the coupling torques in sagittal and coronal planes were measured. Results: For both EMG amplitude and frequency values, good (intraclass correlation coefficient, ICC = 0.75-0.89) to excellent (ICC greater than or equal to 0.90) reliability was found in the 6 trunk muscles at different exertion levels during axial rotation. The reliability of both maximal isometric axial rotation torque and coupling torques in sagittal and coronal planes were found to be excellent (ICC greater than or equal to 0.93). Conclusions: Good to excellent reliability of EMG measures of trunk muscles and torque measurements during isometric axial rotation was demonstrated. This provides further confidence of using EMG and triaxial torque assessment as outcome measures in rehabilitation and in the evaluation of the human performance in the work place. (C) 2003 International Federation of Clinical Neurophysiology. Published by Elsevier Ireland Ltd. All rights reserved.
Resumo:
This study has three main objectives. First, it develops a generalization of the commonly used EKS method to multilateral price comparisons. It is shown that the EKS system can be generalized so that weights can be attached to each of the link comparisons used in the EKS computations. These weights can account for differing levels of reliability of the underlying binary comparisons. Second, various reliability measures and corresponding weighting schemes are presented and their merits discussed. Finally, these new methods are applied to an international data set of manufacturing prices from the ICOP project. Although theoretically superior, it appears that the empirical impact of the weighted EKS method is generally small compared to the unweighted EKS. It is also found that this impact is larger when it is applied at lower levels of aggregation. Finally, the importance of using sector specific PPPs in assessing relative levels of manufacturing productivity is indicated.
Resumo:
Despite the evidence of greater fatigability of the cervical flexor muscles in neck pain patients, the effect of unilaterality of neck pain on muscle fatigue has not been investigated. This study compared myoelectric manifestations of sternocleidomastoid (SCM) and anterior scalene (AS) muscle fatigue between the painful and non-painful sides in patients with chronic unilateral neck pain. Myoelectric signals were recorded from the sternal head of SCM and the AS muscles bilaterally during sub-maximal isometric cervical flexion contractions at 25% and 50% of the maximum voluntary contraction (MVC). The time course of the mean power frequency, average rectified value and conduction velocity of the electromyographic signals were calculated to quantify myoelectric manifestations of muscle fatigue. Results revealed greater estimates of the initial value and slope of the mean frequency for both the SCM and AS muscles on the side of the patient's neck pain at 25% and 50% of MVC. These results indicate greater myoelectric manifestations of muscle fatigue of the superficial cervical flexor muscles ipsilateral to the side of pain. This suggests a specificity of the effect of pain on muscle function and hence the need for specificity of therapeutic exercise in the management of neck pain patients. (C) 2003 European Federation of Chapters of the International Association for the Study of Pain. Published by Elsevier Ltd. All rights reserved.
Resumo:
The effect of high power ultrasound waves on physical, biochemical, and microbial properties of meat have been the subject of a great deal of interest in recent years. The present review details the basic principles underlying the effects of ultrasound on the properties of food systems, followed by discussion of specific effects of high power ultrasound on meat products, including muscle, cellular, and subcellular components. In addition, the specific effects of high power ultrasound on the following parameters are discussed: enzyme activities and efficiencies, muscle proteolysis, quality criteria such as tenderness; extraction of protein, gelation, and restructuring of meat products and germicidal properties against meat micro-organisms.
Resumo:
The purpose of this study was to compare average muscle fiber conduction velocity (CV) and its changes over time in the upper trapezius muscle during a repetitive upper limb task in people with chronic neck pain and in healthy controls. Surface EMG signals were detected bilaterally from the upper trapezius muscle of 19 patients and nine healthy controls using linear adhesive arrays of four electrodes. Subjects were asked to tap their hands in a cyclic manner between targets positioned mid-thigh and 120 degrees of shoulder flexion, to the beat of a metronome set at 88 beats/min for up to 5 min. Muscle fiber CV and instantaneous mean power spectral frequency were estimated for each cycle at the time instant corresponding to 90 degrees of shoulder flexion. Average muscle fiber CV of the upper trapezius muscle was higher in people with chronic neck pain (mean +/- SE, 4.8 +/- 0.1 m/s) than in control subjects (4.4 +/- 0.1 m/s; P
Resumo:
Background. Older adults typically exhibit dramatic reductions in the rate of force development and deficits in the execution of rapid coordinated movements. The purpose of the current study was to investigate the association between the reduced rate of force development exhibited by older adults and the ability to coordinate groups of muscles. Methods. The performance of a visually guided aiming task that required the generation of isometric torque about the elbow joint was compared in 10 young adults (age range, 19 to 29 years) and 10 older adults (age range, 65 to 80 years). Participants were required to exert isometric torque in flexion, extension, pronation, or supination, or in combinations of these directions, to reach a target in minimum time. Surface electromyograms were obtained from the biceps brachii, triceps brachii, brachioradialis, and flexor carpi radialis. Results. Older participants exhibited slower target acquisition times compared with young participants (p < .05), with the extent of the differences between the groups varying markedly between target locations. Conclusions. The impairment in performance, although partially attributable to a general decline in the ability to produce force rapidly, was also affected by the requirements for muscular coordination. At the neuromuscular level, differences between the young and the elderly were expressed most prominently in the bifunctional muscle biceps brachii and in certain temporal aspects of muscular coordination.
Resumo:
In young adults, improvements in the rate of force development as a result of resistance training are accompanied by increases in neural drive in the very initial phase of muscle activation. The purpose of this experiment was to determine if older adults also exhibit similar adaptations in response to rate of force development (RFD) training. Eight young (21-35 years) and eight older (60-79 years) adults were assessed during the production of maximum rapid contractions, before and after four weeks of progressive resistance training for the elbow flexors. Young and older adults exhibited significant increases (P< 0.01) in peak RFD, of 25.6% and 28.6% respectively. For both groups the increase in RFD was accompanied by an increase in the root mean square (RMS) amplitude and in the rate of rise (RER) in the electromyogram (EMG) throughout the initial 100 ms of activation. For older adults, however, this training response was only apparent in the brachialis and brachioradialis muscles. This response was not observed in surface EMG recorded from the biceps brachii muscle during either RFD testing or throughout training, nor was it observed in the pronator teres muscle. The minimal adaptations observed for older adults in the bifunctional muscles biceps brachii and pronator teres are considered to indicate a compromise of the neural adaptations older adults might experience in response to resistance training.