38 resultados para MDD. OWL-S. Serviço Web semântico. Perfil UML. Web semântica
Resumo:
In 2002, an integrated basic science course was introduced into the Bachelor of Dental Sciences programme at the University of Queensland, Australia. Learning activities for the Metabolism and Nutrition unit within this integrated course included lectures, problem-based learning tutorials, computer-based self-directed learning exercises and practicals. To support student learning and assist students to develop the skills necessary to become lifelong learners, an extensive bank of formative assessment questions was set up using the commercially available package, WebCT®. Questions included short-answer, multiple-choice and extended matching questions. As significant staff time was involved in setting up the question database, the extent to which students used the formative assessment and their perceptions of its usefulness to their learning were evaluated to determine whether formative assessment should be extended to other units within the course. More than 90% of the class completed formative assessment tasks associated with learning activities scheduled in the first two weeks of the block, but this declined to less than 50% by the fourth and final week of the block. Patterns of usage of the formative assessment were also compared in students who scored in the top 10% for all assessment for the semester with those who scored in the lowest 10%. High-performing students accessed the Web-based formative assessment about twice as often as those who scored in the lowest band. However, marks for the formative assessment tests did not differ significantly between the two groups. In a questionnaire that was administered at the completion of the block, students rated the formative assessment highly, with 80% regarding it as being helpful for their learning. In conclusion, although substantial staff time was required to set up the question database, this appeared to be justified by the positive responses of the students.
Resumo:
delta-Atracotoxin-Ar1a (delta-ACTX-Ar1a) is the major polypeptide neurotoxin isolated from the venom of the male Sydney funnel-web spider, Atrax robustus. This neurotoxin targets both insect and mammalian voltage-gated sodium channels, where it competes with scorpion alpha-toxins for neurotoxin receptor site-3 to slow sodium-channel inactivation. Progress in characterizing the structure and mechanism of action of this toxin has been hampered by the limited supply of pure toxin from natural sources. In this paper, we describe the first successful chemical synthesis and oxidative refolding of the four-disulfide bond containing delta-ACTX-Ar1a. This synthesis involved solid-phase Boc chemistry using double coupling, followed by oxidative folding of purified peptide using a buffer of 2 M GdnHCl and glutathione/glutathiol in a 1:1 mixture of 2-propanol (pH 8.5). Successful oxidation and refolding was confirmed using both chemical and pharmacological characterization. Ion spray mass spectrometry was employed to confirm the molecular weight. H-1 NMR analysis showed identical chemical shifts for native and synthetic toxins, indicating that the synthetic toxin adopts the native fold. Pharmacological studies employing whole-cell patch clamp recordings from rat dorsal root ganglion neurons confirmed that synthetic delta-ACTX-Ar1a produced a slowing of the sodium current inactivation and hyperpolarizing shifts in the voltage-dependence of activation and inactivation similar to native toxin. Under current clamp conditions, we show for the first time that delta-ACTX-Ar1a produces spontaneous repetitive plateau potentials underlying the clinical symptoms seen during envenomation. This successful oxidative refolding of synthetic delta-ACTX-Ar1a paves the way for future structure-activity studies to determine the toxin pharmacophore.
Resumo:
Recent studies have revealed regional variation in the density and distribution of inhibitory neurons in different cortical areas, which are thought to reflect area-specific specializations in cortical circuitry. However, there are as yet few standardized quantitative data regarding how the inhibitory circuitry in prefrontal cortex (PFC), which is thought to be involved in executive functions such as cognition, emotion and decision making, compares to that in other cortical areas. Here we used immunohistochemical techniques to determine the density and distribution of parvalbumin (PV)-, calbindin (CB)-, and calretinin (CR)-immunoreactive (ir) neurons and axon terminals in the dorsolateral and orbital PFC of the owl monkey (Aotus trivirgatus), and compared them directly with data obtained using the same techniques in 11 different visual, somatosensory and motor areas. We found marked differences in the density of PV-ir, CB-ir, and CR-ir interneurons in several cortical areas. One hundred and twenty eight of all 234 possible between-area pairwise comparisons were significantly different. The density of specific subpopulations of these cells also varied among cortical areas, as did the density of axon terminals. Comparison of PFC with other cortical areas revealed that 40 of all 66 possible statistical comparisons of the density of PV-ir, CB-ir, and CR-ir cells were significantly different. We also found evidence for heterogeneity in the pattern of labeling of PV-ir, CB-ir, and CR-ir cells and axon terminals between the dorsolateral and orbital subdivisions of PFC. These data are likely to reflect basic differences in interneuron circuitry, which are likely to influence inhibitory function in the cortex. Copyright (C) 2003 S. Karger AG, Basel.
Resumo:
Recent studies have revealed marked variation in pyramidal cell structure in the visual cortex of macaque and marmoset monkeys. In particular, there is a systematic increase in the size of, and number of spines in, the arbours of pyramidal cells with progression through occipitotemporal (OT) visual areas. In the present study we extend the basis for comparison by investigating pyramidal cell structure in visual areas of the nocturnal owl monkey. As in the diurnal macaque and marmoset monkeys, pyramidal cells became progressively larger and more spinous with anterior progression through OT visual areas. These data suggest that: 1. the trend for more complex pyramidal cells with anterior progression through OT visual areas is a fundamental organizational principle in primate cortex; 2. areal specialization of the pyramidal cell phenotype provides an anatomical substrate for the reconstruction of the visual scene in OT areas; 3. evolutionary specialization of different aspects of visual processing may determine the extent of interareal variation in the pyramidal cell phenotype in different species; and 4. pyramidal cell structure is not necessarily related to brain size. Crown Copyright (C) 2003 Published by Elsevier Science Ltd on behalf of IBRO. All rights reserved.
Resumo:
Recent studies have revealed marked regional variation in pyramidal cell morphology in primate cortex. In particular, pyramidal cells in human and macaque prefrontal cortex (PFC) are considerably more spinous than those in other cortical regions. PFC pyramidal cells in the New World marmoset monkey, however, are less spinous than those in man and macaques. Taken together, these data suggest that the pyramidal cell has become more branched and more spinous during the evolution of PFC in only some primate lineages. This specialization may be of fundamental importance in determining the cognitive styles of the different species. However, these data are preliminary, with only one New World and two Old World species having been studied. Moreover, the marmoset data were obtained from different cases. In the present study we investigated PFC pyramidal cells in another New World monkey, the owl monkey, to extend the basis for comparison. As in the New World marmoset monkey, prefrontal pyramidal cells in owl monkeys have relatively few spines. These species differences appear to reflect variation in the extent to which PFC circuitry has become specialized during evolution. Highly complex pyramidal cells in PFC appear not to have been a feature of a common prosimian ancestor, but have evolved with the dramatic expansion of PFC in some anthropoid lineages.
Resumo:
The branching structure of neurones is thought to influence patterns of connectivity and how inputs are integrated within the arbor. Recent studies have revealed a remarkable degree of variation in the branching structure of pyramidal cells in the cerebral cortex of diurnal primates, suggesting regional specialization in neuronal function. Such specialization in pyramidal cell structure may be important for various aspects of visual function, such as object recognition and color processing. To better understand the functional role of regional variation in the pyramidal cell phenotype in visual processing, we determined the complexity of the dendritic branching pattern of pyramidal cells in visual cortex of the nocturnal New World owl monkey. We used the fractal dilation method to quantify the branching structure of pyramidal cells in the primary visual area (V1), the second visual area (V2) and the caudal and rostral subdivisions of inferotemporal cortex (ITc and ITr, respectively), which are often associated with color processing. We found that, as in diurnal monkeys, there was a trend for cells of increasing fractal dimension with progression through these cortical areas. The increasing complexity paralleled a trend for increasing symmetry. That we found a similar trend in both diurnal and nocturnal monkeys suggests that it was a feature of a common anthropoid ancestor.