164 resultados para Low Transfer Constant


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Wolbachia is an endosymbiont of diverse arthropod lineages that can induce various alterations of host reproduction for its own benefice. Cytoplasmic incompatibility (CI) is the most common phenomenon, which results in embryonic lethality when males that bear Wolbachia are mated with females that do not. In the cherry fruit fly, Rhagoletis cerasi, Wolbachia seems to be responsible for previously reported patterns of incompatibility between populations. Here we report on the artificial transfer of two Wolbachia variants (wCer1 and wCer2) from R. cerasi into Drosophila simulans, which was performed with two major goals in mind: first, to isolate wCer1 from wCer2 in order to individually test their respective abilities to induce Cl in the new host; and, second, to test the theoretical prediction that recent Wolbachia-host associations should be characterized by high levels of CI, fitness costs to the new host, and inefficient transmission from mothers to offspring. wCer1 was unable to develop in the new host, resulting in its rapid loss after successful injection, while wCer2 was established in the new host. Transmission rates of wCer2 were low, and the infection showed negative fitness effects, consistent with our prediction, but CI levels were unexpectedly lower in the new host. Based on these parameter estimates, neither wCer1 nor wCer2 could be naturally maintained in D. simulans. The experiment thus suggests that natural Wolbachia transfer between species might be restricted by many factors, should the ecological barriers be bypassed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

To determine the effects of nitrogen source on rates of net N transfer between plants connected by a common mycorrhizal network, we measured transfer of N supplied as (NH4NO3)-N-15-N-14 or (NH4NO3)-N-14-N-15 in three Casuarina/Eucalyptus treatments interconnected by a Pisolithus sp. The treatments were nonnodulated nonmycorrhizal/nonmycorrhizal; nonnodulated mycorrhizal/mycorrhizal; and nodulated mycorrhizal/mycorrhizal. Mycorrhization was 67% in Eucalyptus and 36% in Casuarina. N-2 fixation supplied 38% of the N in Casuarina. Biomass, N and N-15 contents were lowest in nonmycorrhizal plants and greatest in plants in the nodulated/mycorrhizal treatment. Nitrogen transfer was enhanced by mycorrhization and by nodulation, and was greater when N was supplied as (NH4+)-N-15 than (NO3-)-N-15. Nitrogen transfer rates were lowest in the nonmycorrhizal treatment for either N-15 source, and greatest in the nodulated, mycorrhizal treatment. Transfer was greater to Casuarina than to Eucalyptus and where ammonium rather than nitrate was the N source. Irrespective of N-15 source and of whether Casuarina or Eucalyptus was the N sink, net N transfer was low and was similar in both nonnodulated treatments. However, when Casuarina was the N sink in the nodulated, mycorrhizal treatment, net N transfer was much greater with (NH4+)-N-15 than with (NO3-)-N-15. High N demand by Casuarina resulted in greater net N transfer from the less N-demanding Eucalyptus. Net transfer of N from a non-N-2-fixing to an N-2-fixing plant may reflect the very high N demand of N-2-fixing species.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The use of phenyldithioacetic acid (PDA) in homopolymerizations of styrene or methyl acrylate produced only a small fraction of chains with dithioester end groups. The polymerizations using 1-phenylentyl phenyldithioacetate (PEPDTA) and PDA in the same reaction showed that PDA had little or no influence on the rate or molecular weight distribution even when a 1:1 ratio is used. The mechanistic pathway for the polymerizations in the presence of PDA seemed to be different for each monomer. Styrene favors addition of styrene to PDA via a Markovnikov type addition to form a reactive RAFT agent. The polymer was shown by double detection SEC to contain dithioester end groups over the whole distribution. This polymer was then used in a chain extension experiment and the M-n was close to theory. A unique feature of this work was that PDA could be used to form a RAFT agent in situ by heating a mixture of styrene and PDA for 24 h at 70 degrees C and then polymerizing in the presence of AIBN to give a linear increase in Mn and low values of PDI (< 1.14). In the case of the polymerization of MA with PDA, the mechanism was proposed to be via degradative chain transfer. (c) 2005 Wiley Periodicals, Inc.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This study was to investigate the impacts of operating conditions and liquid properties on the hydrodynamics and volumetric mass transfer coefficient in activated sludge air-lift reactors. Experiments were conducted in internal and external air-lift reactors. The activated sludge liquid displayed a non-Newtonian rheological behavior. With an increase in the superficial gas velocity, the liquid circulation velocity, gas holdup and mass transfer coefficient increased, and the gas residence time decreased. The liquid circulation velocity, gas holdup and the mass transfer coefficient decreased as the sludge loading increased. The flow regime in the activated sludge air-lift reactors had significant effect on the liquid circulation velocity and the gas holdup, but appeared to have little impact on the mass transfer coefficient. The experimental results in this study were best described by the empirical models, in which the reactor geometry, superficial gas velocity and/or power consumption unit, and solid and fluid properties were employed. (c) 2006 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A comparison of a constant (continuous delivery of 4% FiO(2)) and a variable (initial 5% FiO(2) with adjustments to induce low amplitude EEG (LAEEG) and hypotension) hypoxic/ischemic insult was performed to determine which insult was more effective in producing a consistent degree of survivable neuropathological damage in a newborn piglet model of perinatal asphyxia. We also examined which physiological responses contributed to this outcome. Thirty-nine 1-day-old piglets were subjected to either a constant hypoxic/ischemic insult of 30- to 37-min duration or a variable hypoxic/ischemic insult of 30-min low peak amplitude EEG (LAEEG < 5 mu V) including 10 min of low mean arterial blood pressure (MABP < 70% of baseline). Control animals (n = 6) received 21% FiO(2) for the duration of the experiment. At 72 h, the piglets were euthanased, their brains removed and fixed in 4% paraformaldehyde and assessed for hypoxic/ischemic injury by histological analysis. Based on neuropathology scores, piglets were grouped as undamaged or damaged; piglets that did not survive to 72 h were grouped separately as dead. The variable insult resulted in a greater number of piglets with neuropathological damage (undamaged = 12.5%, damaged = 68.75%, dead = 18.75%) while the constant insult resulted in a large proportion of undamaged piglets (undamaged = 50%, damaged = 22.2%, dead = 27.8%). A hypoxic insult varied to maintain peak amplitude EEG < 5 mu V results in a greater number of survivors with a consistent degree of neuropathological damage than a constant hypoxic insult. Physiological variables MABP, LAEEG, pH and arterial base excess were found to be significantly associated with neuropathological outcome. (c) 2006 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The rate of electronic energy transfer (EET) between a naphthalene donor and an anthracene acceptor in [ZnL3]-(ClO4)(2) and [ZnL4](ClO4)(2) was determined by time-resolved fluorescence measurements, where L 3 and L 4 are the geometrical isomers of 6-[(anthracen-9-ylmethyl)amino]-trans-6,13-dimethyl-1,4,8,11-tetraazacyclotetradecane-13-amine (L-2), substituted with either a naphthalen-1-ylmethyl or naphthalen-2-ylmethyl donor, respectively. The energy transfer rate constant, k(EET), was determined to be (0.92 +/- 0.02) x 10(9) s(-1) for the naphthalen-1-ylmethyl-substituted isomer, while that for the naphthalen-2-ylmethyl-substituted isomer is somewhat faster, with k(EET) = (1.31 +/- 0.01) x 10(9) s(-1). The solid-state structure of [(ZnLCl)-Cl-3]ClO4 has been determined, and using molecular modeling calculations, the likely distributions of solution conformations in CH3CN have been evaluated for both complexes. The calculated conformational distributions in the common trans-III N-based isomeric form gave Forster EET rate constants that account for the differences observed and are in excellent agreement with the experimental values. It is shown that the full range of conformers must be considered to accurately reproduce the observed EET kinetics.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this paper we examine the effect of contact angle (or surface wettability) on the convective heat transfer coefficient in microchannels. Slip flow, where the fluid velocity at the wall is non-zero, is most likely to occur in microchannels due to its dependence on shear rate or wall shear stress. We show analytically that for a constant pressure drop, the presence of slip increases the Nusselt number. In a microchannel heat exchanger we modified the surface wettability from a contact angle of 20 degrees-120 degrees using thin film coating technology. Apparent slip flow is implied from pressure and flow rate measurements with a departure from classical laminar friction coefficients above a critical shear rate of approximately 10,000 s(-1). The magnitude of this departure is dependant on the contact angle with higher contact angles surfaces exhibiting larger pressure drop decreases. Similarly, the non-dimensional heat flux is found to decrease relative to laminar non-slip theory, and this decrease is also a function of the contact angle. Depending on the contact angle and the wall shear rate, variations in the heat transfer rate exceeding 10% can be expected. Thus the contact angle is an important consideration in the design of micro, and even more so, nano heat exchangers. (c) 2006 Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The low-energy properties of the one-dimensional anyon gas with a delta-function interaction are discussed in the context of its Bethe ansatz solution. It is found that the anyonic statistical parameter and the dynamical coupling constant induce Haldane exclusion statistics interpolating between bosons and fermions. Moreover, the anyonic parameter may trigger statistics beyond Fermi statistics for which the exclusion parameter alpha is greater than one. The Tonks-Girardeau and the weak coupling limits are discussed in detail. The results support the universal role of alpha in the dispersion relations.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A refined nonlinear heat transfer model of a mouse has been developed to simulate the transient temperature rise in a neoplastic tumour and neighbouring tissue during regional hyperthermia using a 150 kHz inductive coil. In this study, we incorporate various bio-energetic enhancements to the heat transfer equation and numerical validations based on experimental findings for the mouse, in terms of nonlinear metabolic heat production, homeothermy, blood perfusion parameters, thermoregulation, psychological and physiological effects. The discretized bio-heat transfer equation has been validated with the commercial software FEMLAB on a canonical multi-sphere object before applying the scheme to the inhomogeneous mouse voxel phantom. The time-dependent numerical results of regional hyperthermia of mouse thigh have been compared with the available experimental temperature results with only a few small disparities. During the first 20 min of local unfocused heating, the temperature in the tumour and the surrounding tissue increased by around 7.5 degrees C. The objective of this preliminary study was to develop a validated electrothermal numerical scheme for inductive hyperthermia of a small mammal with the intention of expanding the model into a complete numerical solution involving ferromagnetic nanoparticles for targeted heating of tumours at low frequencies. In addition, the numerical scheme herein could assist in optimizing and tailoring of focused electromagnetic fields for hyperthermia.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We review the role of strong electronic correlations in quasi-two-dimensional organic charge transfer salts such as (BEDT-TTF)(2)X, (BETS)(2)Y, and beta'-[Pd(dmit)(2)](2)Z. We begin by defining minimal models for these materials. It is necessary to identify two classes of material: the first class is strongly dimerized and is described by a half-filled Hubbard model; the second class is not strongly dimerized and is described by a quarter-filled extended Hubbard model. We argue that these models capture the essential physics of these materials. We explore the phase diagram of the half-filled quasi-two-dimensional organic charge transfer salts, focusing on the metallic and superconducting phases. We review work showing that the metallic phase, which has both Fermi liquid and 'bad metal' regimes, is described both quantitatively and qualitatively by dynamical mean field theory (DMFT). The phenomenology of the superconducting state is still a matter of contention. We critically review the experimental situation, focusing on the key experimental results that may distinguish between rival theories of superconductivity, particularly probes of the pairing symmetry and measurements of the superfluid stiffness. We then discuss some strongly correlated theories of superconductivity, in particular the resonating valence bond (RVB) theory of superconductivity. We conclude by discussing some of the major challenges currently facing the field. These include parameterizing minimal models, the evidence for a pseudogap from nuclear magnetic resonance (NMR) experiments, superconductors with low critical temperatures and extremely small superfluid stiffnesses, the possible spin- liquid states in kappa-(ET)(2)Cu-2(CN)(3) and beta'-[Pd(dmit)(2)](2)Z, and the need for high quality large single crystals.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Few studies have focused on the metabolic responses to alternating high- and low-intensity exercise and, specifically, compared these responses to those seen during constant-load exercise performed at the same average power output. This study compared muscle metabolic responses between two patterns of exercise during which the intensity was either constant and just below critical power (CP) or that oscillated above and below CP. Six trained males (mean +/- SD age 23.6 +/- 2.6 y) completed two 30-minute bouts of cycling (alternating and constant) at an average intensity equal to 90% of CR The intensity during alternating exercise varied between 158% CP and 73% CP. Biopsy samples from the vastus lateralis muscle were taken before (PRE), at the midpoint and end (POST) of exercise and analysed for glycogen, lactate, PCr and pH. Although these metabolic variables in muscle changed significantly during both patterns of exercise, there were no significant differences (p > 0.05) between constant and alternating exercise for glycogen (PRE: 418.8 +/- 85 vs. 444.3 +/- 70; POST: 220.5 +/- 59 vs. 259.5 +/- 126mmol.kg(-1) dw), lactate (PRE: 8.5 +/- 7.7 vs. 8.5 +/- 8.3; POST: 49.9 +/- 19.0 vs. 42.6 +/- 26.6 mmol.kg(-1)dw), phosphocreatine (PRE: 77.9 +/- 11.6 vs. 75.7 +/- 16.9; POST: 65.8 +/- 12.1 vs. 61.2 +/- 12.7mmol.kg(-1)dw) or pH (PRE: 6.99 +/- 0.12 vs. 6.99 +/- 0.08; POST: 6.86 +/- 0.13 vs. 6.85 +/- 0.06), respectively. There were also no significant differences in blood lactate responses to the two patterns of exercise. These data suggest that, when the average power output is similar, large variations in exercise intensity exert no significant effect on muscle metabolism.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The dynamics of drop formation and pinch-off have been investigated for a series of low viscosity elastic fluids possessing similar shear viscosities, but differing substantially in elastic properties. On initial approach to the pinch region, the viscoelastic fluids all exhibit the same global necking behavior that is observed for a Newtonian fluid of equivalent shear viscosity. For these low viscosity dilute polymer solutions, inertial and capillary forces form the dominant balance in this potential flow regime, with the viscous force being negligible. The approach to the pinch point, which corresponds to the point of rupture for a Newtonian fluid, is extremely rapid in such solutions, with the sudden increase in curvature producing very large extension rates at this location. In this region the polymer molecules are significantly extended, causing a localized increase in the elastic stresses, which grow to balance the capillary pressure. This prevents the necked fluid from breaking off, as would occur in the equivalent Newtonian fluid. Alternatively, a cylindrical filament forms in which elastic stresses and capillary pressure balance, and the radius decreases exponentially with time. A (0+1)-dimensional finitely extensible nonlinear elastic dumbbell theory incorporating inertial, capillary, and elastic stresses is able to capture the basic features of the experimental observations. Before the critical "pinch time" t(p), an inertial-capillary balance leads to the expected 2/3-power scaling of the minimum radius with time: R-min similar to(t(p)-t)(2/3). However, the diverging deformation rate results in large molecular deformations and rapid crossover to an elastocapillary balance for times t>t(p). In this region, the filament radius decreases exponentially with time R-min similar to exp[(t(p)-t)/lambda(1)], where lambda(1) is the characteristic time constant of the polymer molecules. Measurements of the relaxation times of polyethylene oxide solutions of varying concentrations and molecular weights obtained from high speed imaging of the rate of change of filament radius are significantly higher than the relaxation times estimated from Rouse-Zimm theory, even though the solutions are within the dilute concentration region as determined using intrinsic viscosity measurements. The effective relaxation times exhibit the expected scaling with molecular weight but with an additional dependence on the concentration of the polymer in solution. This is consistent with the expectation that the polymer molecules are in fact highly extended during the approach to the pinch region (i.e., prior to the elastocapillary filament thinning regime) and subsequently as the filament is formed they are further extended by filament stretching at a constant rate until full extension of the polymer coil is achieved. In this highly extended state, intermolecular interactions become significant, producing relaxation times far above theoretical predictions for dilute polymer solutions under equilibrium conditions. (C) 2006 American Institute of Physics

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We present a technique to measure the viscosity of microscopic volumes of liquid using rotating optical tweezers. The technique can be used when only microlitre (or less) sample volumes are available, for example biological or medical samples, or to make local measurements in complicated micro-structures such as cells. The rotation of the optical tweezers is achieved using the polarisation of the trapping light to rotate a trapped birefringent spherical crystal, called vaterite. Transfer of angular momentum from a circularly polarised beam to the particle causes the rotation. The transmitted light can then be analysed to determine the applied torque to the particle and its rotation rate. The applied torque is determined from the change in the circular polarisation of the beam caused by the vaterite and the rotation rate is used to find the viscous drag on the rotating spherical particle. The viscosity of the surrounding liquid can then be determined. Using this technique we measured the viscosity of liquids at room temperature, which agree well with tabulated values. We also study the local heating effects due to absorption of the trapping laser beam. We report heating of 50-70 K/W in the region of liquid surrounding the particle.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Stalker (AIAA Paper 87-0403) has suggested that, by ejecting molecules directly upstream from the entire face of a satellite, it is possible to reduce the drag on a satellite in low-Earth orbit and hence maintain orbit with a total fuel mass (for forward ejection and conventional reaction rockets) less than the typical mass requirements of conventional rockets. An analytical analysis is presented here, as well as Monte Carlo simulations. These indicate that to reduce the overall drag on the satellite significantly, collisions between the freestream and ejected molecules must occur at least two satellite diameters upstream. This can be achieved if the molecules are ejected far upstream from the satellite’s surface through a sting that projects forward from the satellite. Using some estimates of what would be feasible sting arrangements, we find that the drag on the satellite can be reduced to such an extent that the satellite’s orbit can be maintained with a total fuel mass of less than 60% of that required for reaction rockets alone. Upstream ejection is effective in reducing the drag for freestream Knudsen numbers less than approximately 250, but not otherwise.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

An unusual saltwater population of the "freshwater" crocodilian, Crocodylus johnstoni, was studied in the estuary of the Limmen Bight River in Australia's Northern Territory and compared with populations in permanently freshwater habitats. Crocodiles in the river were found across a large salinity gradient, from fresh water to a salinity of 24 mg.ml-1, more than twice the body fluid concentration. Plasma osmolarity, concentrations of plasma Na+, Cl-, and K+, and exchangeable Na+ pools were all remarkably constant across the salinity spectrum and were not substantially higher or more variable than those in crocodiles from permanently freshwater habitats. Body fluid volumes did not vary; condition factor and hydration status of crocodiles were not correlated with salinity and were not different from those of crocodiles from permanently fresh water. C. johnstoni clearly has considerable powers of osmoregulation in waters of low to medium salinity. Whether this osmoregulatory competence, extends to continuously hyperosmotic environments is not known, but distributional data suggest that C. johnstoni in hyperosmotic conditions may require periodic access to hypoosmotic water. The study demonstrates a physiological capacity for colonisation of at least some estuarine waters by this normally stenohaline freshwater crocodilian.