48 resultados para Logic of action
Resumo:
Termination of DNA replication in Bacillus subtilis involves the polar arrest of replication forks by a specific complex formed between the replication terminator protein (RTP) and DNA terminator sites. While determination of the crystal structure of RTP has facilitated our understanding of how a single RTP dimer interacts with terminator DNA, additional information is required in order to understand the assembly of a functional fork arrest complex, which requires an interaction between two RTP dimers and the terminator site. In this study, we show that the conformation of the major B. subtilis DNA terminator, Terl, becomes considerably distorted upon binding RTP. Binding of the first dimer of RTP to the B site of Terl causes the DNA to become slightly unwound and bent by similar to 40 degrees. Binding of a second dimer of RTP to the A site causes the bend angle to increase to similar to 60 degrees. We have used this new data to construct two plausible models that might explain how the ternary terminator complex can block DNA replication in a polar manner, in the first model, polarity of action is a consequence of the two RTP-DNA half-sites having different conformations. These different conformations result from different RTP-DNA contacts at each half-site (due to the intrinsic asymmetry at the terminator DNA), as well as interactions (direct or indirect) between the RTP dimers on the DNA. In the second model, polar fork arrest activity is a consequence of the different affinities of RTP for the A and B sites of the terminator DNA, modulated significantly by direct or indirect interactions between the RTP dimers.
Resumo:
The role of catecholamines in the control of the GnRH pulse generator is unclear as studies have relied on the use of peripheral or intracerebroventricular injections, which lack specificity in relation to the anatomical site of action. Direct brain site infusions have been used, however, these are limited by the ability to accurately target small brain regions. One such area of interest in the control of GnRH is the median eminence and arcuate nucleus within the medial basal hypothalamus. Here we describe a method of stereotaxically targeting this area in a large animal (sheep) and an infusion system to deliver drugs into unrestrained conscious animals. To test our technique we infused the dopamine agonist, quinpirole or vehicle into the medial basal hypothalamus of ovariectomised ewes. Quinpirole significantly suppressed LH pulsatility only in animals with injectors located close to the lateral median eminence. This in vivo result supports the hypothesis that dopamine inhibits GnRH secretion by presynaptic inhibition in the lateral median eminence. Also infusion of quinpirole into the medial basal hypothalamus suppressed prolactin secretion providing in vivo evidence that is consistent with the hypothesis that there are stimulatory autoreceptors on tubero-infundibular dopamine neurons. (C) 1997 Elsevier Science B.V.
Resumo:
1. Intracellular recordings were made from neurones in the rat otic ganglion in vitro in order to investigate their morphological, physiological and synaptic properties. We took advantage of the simple structure of these cells to test for a possible role of calcium influx via nicotinic acetylcholine receptors during synaptic transmission. 2. Cells filled with biocytin comprised a homogeneous population with ovoid somata and sparse dendritic trees. Neurones had resting membrane potentials of -53 +/- 0.7 mV (n = 69), input resistances of 112 + 7 M Omega, and membrane time constants of 14 +/- 0.9 ms (n = 60). Upon depolarization, all cells fired overshooting action potentials which mere followed by an apamin-sensitive after-hyperpolarization (AHP). In response to a prolonged current injection, all neurones fired tonically. 3. The repolarization phase of action potentials had a calcium component which was mediated by N-type calcium channels. Application of omega-conotoxin abolished both the repolarizing hump and the after-hgrperpolarization suggesting that calcium influx via N-type channels activates SK-type calcium-activated potassium channels which underlie the AHP. 4. The majority (70%) of neurones received innervation from a single preganglionic fibre which generated a suprathreshold excitatory postsynaptic potential mediated by nicotinic acetylcholine receptors. The other 30% of neurones also had one or more subthreshold nicotinic inputs. 5. Calcium influx via synaptic nicotinic receptors contributed to the AHP current, indicating that this calcium has access to the calcium-activated potassium channels and therefore plays a role in regulating cell excitability.
Resumo:
Rms1 is one of the series of five ramosus loci in pea (Pisum sativum L.) in which recessive mutant alleles confer increased branching at basal and aerial vegetative nodes. Shoots of the nonallelic rms1 and rms2 mutants are phenotypically similar in most respects. However, we found an up to 40-fold difference in root-sap zeatin riboside ([9R]Z) concentration between rms1 and rms2 plants. Compared with wild-type (WT) plants, the concentration of [9R]Z in rms1 root sap was very low and the concentration in rms2 root sap was slightly elevated. To our knowledge, the rms1 mutant is therefore the second ramosus mutant (rms4 being the first) to be characterized with low root-sap [9R]Z content. Like rms2, the apical bud and upper nodes of rms1 plants contain elevated indole-3-acetic acid levels compared with WT shoots. Therefore, the rms1 mutant demonstrates that high shoot auxin levels and low root-sap cytokinin levels are not necessarily correlated with increased apical dominance in pea. A graft-transmissible basis of action has been demonstrated for both mutants from reciprocal grafts between mutant and WT plants. Branching was also largely inhibited in rms1 shoots when grafted to rms2 rootstocks, but was not inhibited in rms2 shoots grafted to rms1 rootstocks. These grafting results are discussed, along with the conclusion that hormone-like signals other than auxin and cytokinin are also involved.
Resumo:
We have isolated a novel family of insect-selective neurotoxins that appear to be the most potent blockers of insect voltage-gated calcium channels reported to date. These toxins display exceptional phylogenetic specificity, with at least a 10,000-fold preference for insect versus vertebrate calcium channels. The structure of one of the toxins reveals a highly structured, disulfide-rich core and a structurally disordered C-terminal extension that is essential for channel blocking activity. Weak structural/functional homology with omega -agatoxin-IVA/B, the prototypic inhibitor of vertebrate P-type calcium channels, suggests that these two toxin families might share a similar mechanism of action despite their vastly different phylogenetic specificities.
Resumo:
Early HIV-1 reverse transcription can be separated into initiation and elongation phases. Here we show, using PCR analysis of negative-strand strong-stop DNA [(-)ssDNA] synthesis in intact virus, that different reverse transcriptase (RT) inhibitors affect distinct phases of early natural endogenous reverse transcription (NERT), The effects of nevirapine on NERT were consistent with a mechanism of action including both specific and nonspecific binding events. The nonspecific component of this inhibition targeted the elongation reaction, whereas the specific effect seemed principally to be directed at very early events (initiation or the initiation-elongation switch), In contrast, foscarnet and the nucleoside analog ddATP inhibited both early and late (-)ssDNA synthesis in a similar manner. We also examined compounds that targeted other viral proteins and found that Ro24-7429 (a Tat antagonist) and rosmarinic acid (an integrase inhibitor) also directly inhibited RT, Our results indicate that NERT can be used to identify and evaluate compounds that directly target the reverse transcription complex.
Resumo:
Growing evidence supports low-intensity pulsed ultrasound (US) as an osteogenic mechanical stimulus. Its effects on isolated bone cells and on fractured bone are established. However, its effects on osteoporosis are not clear. This study examined US effects on ovariectomy (OVX) induced bone changes within the rodent hindlimb (distal femur and proximal tibia), and on normal bone in animals following sham-OVX. Animals were exposed to daily unilateral active-US and contralateral inactive-US for 12 weeks. Bone status was assessed using dual energy X-ray absorptiometry and histomorphometry. Ovariectomy resulted in significant bone changes. Low-intensity pulsed US did not influence these changes. These results suggest that the US dose introduced may not be a beneficial treatment for osteoporosis, and that intact bone may be less sensitive to US than fractured bone and isolated bone cells. This may relate to the biophysical mechanisms of action of US, US-bone interactions and tissue level processes taking place.
Resumo:
The pancreas is a relative newcomer to the stable of tissues with an intrinsic angiotensin-generating system. The involvement of this system in pancreatic activity will be dependent on the angiotensin-generating paths present in the pancreas and their precise cellular location. Thus far, renin, angiotensin-converting enzyme (ACE), angiotensin II and AT1 and AT2 receptors have been found. These are components of the "classical" renin-angiotensin system. But there is uncertainty as to their location and site of action. Furthermore, it is not known which, if any, alternative enzymes to renin and ACE are present, which angiotensins in addition to angiotensin II are generated and whether or not there are receptors to angiotensin IV and angiotensin-(1-7). Future research should focus on these aspects in order to provide a mechanistic basis to pancreatic physiological functions and to pathological conditions of clinical relevance.
Resumo:
SOX18 is a transcription factor that is transiently expressed in nascent endothelial cells during embryonic development and adult neovascularization. This protein belongs to the SOX family of transcription factors, ih,which are proving to be some of the key regulators of cell-type specification in the vertebrate embryo. Natural mutations in the Sox18 gene have been shown to result to cardiovascular dysfunction, in some cases leading to death. Available evidence thus implicates Sox18 as an important regulator of vascular development, most likely playing a key role in endothelial cell specification. However; the genetic knockout of Sox18 in mice has produced a confounding result that complicates our understanding of the molecular mode of action of the SOX18 protein. We speculate that Sox18 inky act in a redundant fashion with closely related genes such as Sox7 and/or Sox17. (C) 2001, Elsevier Science Inc.
Resumo:
Sry, a gene from the Y chromosome, is known to initiate testis formation and subsequent male differentiation in mammals. A related gene, Sox9, also plays a critical role in testis determination, possibly in all vertebrates. A number of models have been presented regarding the molecular modes of action of these two genes. However, details regarding their regulation, regulatory target genes, and interacting protein factors and co-factors have not been established with any certainty. In this review, we examine new evidence and re-examine existing evidence bearing on these issues, in an effort to build up an integrative model of the network of gene activity centred around Sry and Sox9. J. Exp. Zool. 290:463-474, 2001. (C) 2001 Wiley-Liss, Inc.
Resumo:
We have studied the spatial dynamics of Sry transcription in the genital ridges of mouse embryos. We find that Sry is expressed in a dynamic wave that emanates from the central and/or anterior regions, extends subsequently to both poles, and ends in the caudal pole. This dynamism may explain the relative positioning of ovarian and testicular tissue seen in ovotestes in mice. Since direct regulatory targets of SRY ought to be expressed in a corresponding or complimentary wave, our observations pave the way for identification of target genes. Sry is expressed in internal cells but not in coelomic surface epithelial cells, indicating that its effect on proliferation of surface cells is achieved non-cell-autonomously. The cellular dynamism of Sry expression revealed in this study thus provides important insights into both the cellular and molecular mode of action of SRY, and how perturbations in Sry expression can lead to anomalies of sexual development. (C) 2001 Wiley-Liss, Inc.
Resumo:
Backhousia citriodora is typical of the many commercially valuable woody Australian Myrtaceae species that are recalcitrant in forming adventitious roots from cuttings after maturation. A series of experiments were conducted to identify an endogenous rooting inhibitor in line with established criteria. Endogenous levels of citral were correlated with the rooting capacities of juvenile versus mature, and easy- versus difficult-to-root genotypes of B. citriodora, in both winter and summer. The biological activity of citral was confirmed in bioassays on mung beans and easy-to-root B. citriodora seedlings. Evidence of a common mechanism of root inhibition with other species in the Myrtaceae and the role of action of citral are discussed.
Resumo:
Background: For research on physical activity interventions to progress systematically, the mechanisms of action must be studied. In doing so, the research methods and their associated concepts and terminology become more complex. It is particularly important to clearly distinguish among determinants, correlates, mediators, moderators, and confounder variables used in physical activity research. This article examines the factors that are correlated with and that may have a causal relationship to physical activity. Methods and Results: We propose that the term correlate be used, instead of determinant, to describe statistical associations or correlations between measured variables and physical activity. Studies of the correlates of physical activity are reviewed. The findings of these studies can help to critique existing theories of health behavior change and can provide hypotheses to be tested in intervention studies from which it is possible to draw causal inferences. Mediator, moderator, and confounder variables can act to influence measured changes in physical activity. Intervening causal variables that are necessary to complete a cause-effect pathway between an intervention and physical activity are termed mediators. The relationship between an intervention and physical activity behaviors may vary for different groups; the strata by which they vary are levels of moderators of the relationship. Other factors may distort or affect the observed relationships between program exposure and physical activity, and are known as confounders. Conclusions: Consistent use of terms and additional research on mediators and moderators of intervention effects will improve our ability to understand and influence physical activity.
Resumo:
Cylindrospermopsin (CYN) is a hepatotoxin isolated from the blue-green alga Cylindrospermopsis raciborskii. The role of both glutathione (GSH) and the cytochrome P450 enzyme system (P450) in the mechanism of toxicity of CYN has been previously investigated in in vitro systems. We have investigated the role of GSH and P450 in vivo in mice. Mice pre-treated with buthionine sulphoximine and diethyl maleate to deplete hepatic GSH prior to dosing with 0.2 mg/kg CYN showed a seven-day survival rate of 5/13 while the control group rate was 9/14. Dosing mice with 0.2 mg/kg CYN produced a small decrease in hepatic GSH with a characteristic rebound effect at 24 h, The magnitude of this effect is however small and combined with the non-significant difference in survival rates after GSH depletion suggest depletion of GSH by CYN could not be a primary mechanism for CYN toxicity, Conversely, pro-treatment with piperonyl butoxide, a P450 inhibitor, protected mice against CYN toxicity giving a survival rate of 10/10 compared with 4/10 in the control group (p < 0.05 Chi squared) and was protective at doses up to 0.8 mg/kg, suggesting activation of CYN by P450 is of primary importance in the mechanism of action. (C) 2002 Elsevier Science Ltd. All rights reserved.
Resumo:
Venous thromboembolism is a frequent, life-threatening, postoperative complication of hip-fracture and total-knee-replacement surgery. Fondaparinux is a synthetic polysaccharide that selectively binds to antithrombin, the primary endogenous regulator of blood coagulation. Low molecular weight heparins, such as enoxaparin, are less specific inhibitors of coagulation. In patients undergoing hip-fracture surgery, fondaparinux is more effective than once-daily enoxaparin as prophylaxis for venous thromboembolism. Fondaparinux (25 mg/day s.c.) was also more effective than enoxaparin (30 mg s.c. b.i.d.) as prophylaxis for venous thromboembolism in elective knee surgery. These differences may be explained by the fact that there is less prophylaxis cover with enoxaparin, as it has a much shorter duration of action than fondaparinux. Thus, with the present dosing regimens, fondaparinux is probably preferable to enoxaparin for the prevention of venous thromboembolism.