41 resultados para Linear Models in Temporal Series


Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper, we consider testing for additivity in a class of nonparametric stochastic regression models. Two test statistics are constructed and their asymptotic distributions are established. We also conduct a small sample study for one of the test statistics through a simulated example. (C) 2002 Elsevier Science (USA).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The relative importance of factors that may promote genetic differentiation in marine organisms is largely unknown. Here, contributions to population structure from biogeography, habitat distribution, and isolation by distance were investigated in Axoclinus nigricaudus, a small subtidal rock reef fish, throughout its range in the Gulf of California. A 408 basepair fragment of the mitochondrial control region was sequenced from 105 individuals. Variation was significantly partitioned between many pairs of populations. Phylogenetic analyses, hierarchical analyses of variance, and general linear models substantiated a major break between two putative biogeographic regions. This genetic discontinuity coincides with an abrupt change in ecological characteristics (including temperature and salinity) but does not coincide with known oceanographic circulation patterns. Geographic distance and the nature of habitat separating populations (continuous habitat along a shoreline, discontinuous habitat along a shoreline, and open water) also contributed to population structure in general linear model analyses. To verify that local populations are genetically stable over time, one population was resampled on four occasions over eighteen months; it showed no evidence of a temporal component to diversity. These results indicate that having a planktonic life stage does not preclude geographically partitioned genetic variation over relatively small geographic distances in marine environments. Moreover, levels of genetic differentiation among populations of Axoclinus nigricaudus cannot be explained by a single factor, but are due to the combined influences of a biogeographic boundary, habitat, and geographic distance.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This special issue represents a further exploration of some issues raised at a symposium entitled “Functional magnetic resonance imaging: From methods to madness” presented during the 15th annual Theoretical and Experimental Neuropsychology (TENNET XV) meeting in Montreal, Canada in June, 2004. The special issue’s theme is methods and learning in functional magnetic resonance imaging (fMRI), and it comprises 6 articles (3 reviews and 3 empirical studies). The first (Amaro and Barker) provides a beginners guide to fMRI and the BOLD effect (perhaps an alternative title might have been “fMRI for dummies”). While fMRI is now commonplace, there are still researchers who have yet to employ it as an experimental method and need some basic questions answered before they venture into new territory. This article should serve them well. A key issue of interest at the symposium was how fMRI could be used to elucidate cerebral mechanisms responsible for new learning. The next 4 articles address this directly, with the first (Little and Thulborn) an overview of data from fMRI studies of category-learning, and the second from the same laboratory (Little, Shin, Siscol, and Thulborn) an empirical investigation of changes in brain activity occurring across different stages of learning. While a role for medial temporal lobe (MTL) structures in episodic memory encoding has been acknowledged for some time, the different experimental tasks and stimuli employed across neuroimaging studies have not surprisingly produced conflicting data in terms of the precise subregion(s) involved. The next paper (Parsons, Haut, Lemieux, Moran, and Leach) addresses this by examining effects of stimulus modality during verbal memory encoding. Typically, BOLD fMRI studies of learning are conducted over short time scales, however, the fourth paper in this series (Olson, Rao, Moore, Wang, Detre, and Aguirre) describes an empirical investigation of learning occurring over a longer than usual period, achieving this by employing a relatively novel technique called perfusion fMRI. This technique shows considerable promise for future studies. The final article in this special issue (de Zubicaray) represents a departure from the more familiar cognitive neuroscience applications of fMRI, instead describing how neuroimaging studies might be conducted to both inform and constrain information processing models of cognition.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Coral reefs are the most diverse marine ecosystem and embrace possibly millions of plant, animal and protist species. Mutualistic symbioses are a fundamental feature of coral reefs that have been used to explain their structure, biodiversity and existence. Complex inter-relationships between hosts, habitats and symbionts belie closely coupled nutrient and community dynamics that create the circumstances for something from nothing (or the oasis in a nutrient desert). The flip side of these dynamics is a close dependency between species, which results in a series of non-linear relationships as conditions change. These responses are being highlighted as anthropogenic influences increase across the world's tropical and subtropical coastlines. Caribbean as well as Indo-Pacific coral populations are now in a serious decline in many parts of the world. This has resulted in a significant reorganization of how coral reef ecosystems function. Among the spectra of changes brought about by humans is rapid climate change. Mass coral bleaching - the loss of the dinoflagellate symbionts from reef-building corals - and mortality has affected the world's coral reefs with increasing frequency and intensity since the late 1970s. Mass bleaching events, which often cover thousands of square kilometres of coral reefs, are triggered by small increases (+1-3degreesC) in water temperature. These increases in sea temperature are often seen during warm phase weather conditions (e.g. ENSO) and are increasing in size and magnitude. The loss of living coral cover (e.g. 16% globally in 1998, an exceptionally warm year) is resulting in an as yet unspecified reduction in the abundance of a myriad of other species. Projections from general circulation models (GCM) used to project changes in global temperature indicate that conditions even under the mildest greenhouse gas emission scenarios may exceed the thermal tolerances of most reef-building coral communities. Research must now explore key issues such as the extent to which the thermal tolerances of corals and their symbionts are dynamic if bleaching and disease are linked; how the loss of high densities of reef-building coral will affect other dependent species; and, how the loss of coral populations will affect the millions of people globally who depend on coral reefs for their daily survival.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The present paper investigates the characteristics of short-term interest rates in several countries. We examine the importance of nonlinearities in the mean reversion and volatility of short-term interest rates. We examine various models that allow the conditional mean (drift) and conditional variance (diffusion) to be functions of the current short rate.We find that different markets require different models. In particular, we find evidence of nonlinear mean reversion in some of the countries that we examine, linear mean reversion in others and no mean reversion in some countries. For all countries we examine, there is strong evidence of the need for the volatility of interest rate changes to be highly sensitive to the level of the short-term interest rate. Out-of-sample forecasting performance of one-factor short rate models is poor, stemming from the inability of the models to accommodate jumps and discontinuities in the time series data.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The similarity between the Peleg, Pilosof –Boquet–Batholomai and Singh–Kulshrestha models was investigated using the hydration behaviours of whey protein concentrate, wheat starch and whey protein isolate at 30 °C in 100% relative humidity. The three models were shown to be mathematically the same within experimental variations, and they yielded parameters that are related. The models, in their linear and original forms, were suitable (r2 > 0.98) in describing the sorption behaviours of the samples, and are sensitive to the length of the sorption segment used in the computation. The whey proteins absorbed more moisture than the wheat starch, and the isolate exhibited a higher sorptive ability than the concentrate.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Previous work has identified several short-comings in the ability of four spring wheat and one barley model to simulate crop processes and resource utilization. This can have important implications when such models are used within systems models where final soil water and nitrogen conditions of one crop define the starting conditions of the following crop. In an attempt to overcome these limitations and to reconcile a range of modelling approaches, existing model components that worked demonstrably well were combined with new components for aspects where existing capabilities were inadequate. This resulted in the Integrated Wheat Model (I_WHEAT), which was developed as a module of the cropping systems model APSIM. To increase predictive capability of the model, process detail was reduced, where possible, by replacing groups of processes with conservative, biologically meaningful parameters. I_WHEAT does not contain a soil water or soil nitrogen balance. These are present as other modules of APSIM. In I_WHEAT, yield is simulated using a linear increase in harvest index whereby nitrogen or water limitations can lead to early termination of grainfilling and hence cessation of harvest index increase. Dry matter increase is calculated either from the amount of intercepted radiation and radiation conversion efficiency or from the amount of water transpired and transpiration efficiency, depending on the most limiting resource. Leaf area and tiller formation are calculated from thermal time and a cultivar specific phyllochron interval. Nitrogen limitation first reduces leaf area and then affects radiation conversion efficiency as it becomes more severe. Water or nitrogen limitations result in reduced leaf expansion, accelerated leaf senescence or tiller death. This reduces the radiation load on the crop canopy (i.e. demand for water) and can make nitrogen available for translocation to other organs. Sensitive feedbacks between light interception and dry matter accumulation are avoided by having environmental effects acting directly on leaf area development, rather than via biomass production. This makes the model more stable across environments without losing the interactions between the different external influences. When comparing model output with models tested previously using data from a wide range of agro-climatic conditions, yield and biomass predictions were equal to the best of those models, but improvements could be demonstrated for simulating leaf area dynamics in response to water and nitrogen supply, kernel nitrogen content, and total water and nitrogen use. I_WHEAT does not require calibration for any of the environments tested. Further model improvement should concentrate on improving phenology simulations, a more thorough derivation of coefficients to describe leaf area development and a better quantification of some processes related to nitrogen dynamics. (C) 1998 Elsevier Science B.V.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The concept of rainfall erosivity is extended to the estimation of catchment sediment yield and its variation over time. Five different formulations of rainfall erosivity indices, using annual, monthly and daily rainfall data, are proposed and tested on two catchments in the humid tropics of Australia. Rainfall erosivity indices, using simple power functions of annual and daily rainfall amounts, were found to be adequate in describing the interannual and seasonal variation of catchment sediment yield. The parameter values of these rainfall erosivity indices for catchment sediment yield are broadly similar to those for rainfall erosivity models in relation to the R-factor in the Universal Soil Loss Equation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background: Dental erosion manifests as cupped lesions on cusp apices and in fissures of teeth in patients from southeast Queensland referred with excessive tooth wear When found in young adults, these lesions may indicate early onset of active dental erosion. If the numbers and extent of cupped lesions increase with age, erosion may be a slow cumulative process. Methods: This cross-sectional study recorded the presence or absence and the relative sizes of cupped lesions from all cusps and occlusal fissures on premolar and permanent molar teeth from study models by image analysis. Type-specimens of cupped lesions were examined. Results: The Incidence by tooth reflected time in the mouth, post-tooth emergence. A linear increase in lesion number and size, with age, was found. However, cupped lesions occurred on mandibular first molar cusp apices as often, and attained greater extent, in adults under 27 years compared with older subjects. Conclusion: Marked differences were found between lesion number and size, between maxillary and mandibular molar sites that reflect differences in salivary protection against dental erosion. The significance of this study is that the mandibular first permanent molar indicates the age of onset and severity of dental erosion.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We compare Bayesian methodology utilizing free-ware BUGS (Bayesian Inference Using Gibbs Sampling) with the traditional structural equation modelling approach based on another free-ware package, Mx. Dichotomous and ordinal (three category) twin data were simulated according to different additive genetic and common environment models for phenotypic variation. Practical issues are discussed in using Gibbs sampling as implemented by BUGS to fit subject-specific Bayesian generalized linear models, where the components of variation may be estimated directly. The simulation study (based on 2000 twin pairs) indicated that there is a consistent advantage in using the Bayesian method to detect a correct model under certain specifications of additive genetics and common environmental effects. For binary data, both methods had difficulty in detecting the correct model when the additive genetic effect was low (between 10 and 20%) or of moderate range (between 20 and 40%). Furthermore, neither method could adequately detect a correct model that included a modest common environmental effect (20%) even when the additive genetic effect was large (50%). Power was significantly improved with ordinal data for most scenarios, except for the case of low heritability under a true ACE model. We illustrate and compare both methods using data from 1239 twin pairs over the age of 50 years, who were registered with the Australian National Health and Medical Research Council Twin Registry (ATR) and presented symptoms associated with osteoarthritis occurring in joints of the hand.