112 resultados para Leaf appearance rate
Resumo:
With the advent of functional neuroimaging techniques, in particular functional magnetic resonance imaging (fMRI), we have gained greater insight into the neural correlates of visuospatial function. However, it may not always be easy to identify the cerebral regions most specifically associated with performance on a given task. One approach is to examine the quantitative relationships between regional activation and behavioral performance measures. In the present study, we investigated the functional neuroanatomy of two different visuospatial processing tasks, judgement of line orientation and mental rotation. Twenty-four normal participants were scanned with fMRI using blocked periodic designs for experimental task presentation. Accuracy and reaction time (RT) to each trial of both activation and baseline conditions in each experiment was recorded. Both experiments activated dorsal and ventral visual cortical areas as well as dorsolateral prefrontal cortex. More regionally specific associations with task performance were identified by estimating the association between (sinusoidal) power of functional response and mean RT to the activation condition; a permutation test based on spatial statistics was used for inference. There was significant behavioral-physiological association in right ventral extrastriate cortex for the line orientation task and in bilateral (predominantly right) superior parietal lobule for the mental rotation task. Comparable associations were not found between power of response and RT to the baseline conditions of the tasks. These data suggest that one region in a neurocognitive network may be most strongly associated with behavioral performance and this may be regarded as the computationally least efficient or rate-limiting node of the network.
Resumo:
Gastropod shells consist of two crystal types of calcium carbonate, an outer, prismatic calcite layer and an inner nacreous layer made of aragonite. In cross-section, the nacre of the nacreous layer appears to have a regular brick-like microstructure composed of thin laminae of aragonite crystals, separated by very thin sheets of protein (Lutz and Rhoads, 1980; Nakahara, 1983). In abalone (Genus, Haliotis) and other gastropods, thin layers of non-lamellar pigmented material occur within the nacre and have been termed alternatively, fine lines, growth rings or growth lines (Shepherd et al., 1995). It has been suggested that these pigmented layers are small, prismatic, calcite layers (Shepherd and Avalos-Borja, 1997; Zaremba et al., 1996) but investigations using a Raman laser in Haliotis rubra show that they contain aragonite rather than calcite (Hawkes et al, 1996). Day and Fleming (1992) suggest that the occurrence of pigmented layers is correlated with regular exogenous cues such as reproduction or temperature changes and indeed in some species, pigmented layers in the shell can be used to age abalone (review: Shepherd and Triantafillos, 1997). However, McShane and Smith (1992) suggest that pigmented layers can occur irregularly and therefore may be unreliable indicators of age.
Resumo:
We describe a method by which the decoherence time of a solid-state qubit may be measured. The qubit is coded in the orbital degree of freedom of a single electron bound to a pair of donor impurities in a semiconductor host. The qubit is manipulated by adiabatically varying an external electric field. We show that by measuring the total probability of a successful qubit rotation as a function of the control field parameters, the decoherence rate may be determined. We estimate various system parameters, including the decoherence rates due to electromagnetic fluctuations and acoustic phonons. We find that, for reasonable physical parameters, the experiment is possible with existing technology. In particular, the use of adiabatic control fields implies that the experiment can be performed with control electronics with a time resolution of tens of nanoseconds.
Resumo:
High removal rate (up to 16.6 mm(3)/s per mm) grinding of alumina and alumina-titania was investigated with respect to material removal and basic grinding parameters using a resin-bond 160 mu m grit diamond wheel at the speeds of 40 and 160 m/s, respectively. The results show that the material removal for the single-phase polycrystalline alumina and the two-phase alumina-titania composite revealed identical mechanisms of microfracture and grain dislodgement under the grinding conditioned selected. There were no distinct differences in surface roughness and morphology for both materials ground at either conventional or high speed. An increase in material removal rate did not necessarily worsen the surface toughness for the two materials at both speeds. Also the grinding forces for the two ceramics demonstrated similar characteristics at any grinding speeds and specific removal rates. Both normal and tangential grinding forces and their force ratios at the high speed were lower than those at the conventional speed, regardless of removal rates. An increase in specific removal rate caused more rapid increases in normal and tangential forces obtained at the conventional grinding speed than those at the high speed. Furthermore, it is found that the high speed grinding at all the removal rates exerted a great amount of coolant-induced normal forces in grinding zone, which were 4-6 times higher than the pure normal grinding forces. (c) 2004 Elsevier Ltd. All rights reserved.
Resumo:
Extension of overthickened continental crust is commonly characterized by an early core complex stage of extension followed by a later stage of crustal-scale rigid block faulting. These two stages are clearly recognized during the extensional destruction of the Alpine orogen in northeast Corsica, where rigid block faulting overprinting core complex formation eventually led to crustal separation and the formation of a new oceanic backarc basin (the Ligurian Sea). Here we investigate the geodynamic evolution of continental extension by using a novel, fully coupled thermomechanical numerical model of the continental crust. We consider that the dynamic evolution is governed by fault weakening, which is generated by the evolution of the natural-state variables (i.e., pressure, deviatoric stress, temperature, and strain rate) and their associated energy fluxes. Our results show the appearance of a detachment layer that controls the initial separation of the brittle crust on characteristic listric faults, and a core complex formation that is exhuming strongly deformed rocks of the detachment zone and relatively undeformed crustal cores. This process is followed by a transitional period, characterized by an apparent tectonic quiescence, in which deformation is not localized and energy stored in the upper crust is transferred downward and causes self-organized mobilization of the lower crust. Eventually, the entire crust ruptures on major crosscutting faults, shifting the tectonic regime from core complex formation to wholesale rigid block faulting.
Resumo:
Macrophomina phaseolina, causing leaf spot of mungbean is reported in Australia. Koch's postulates were fulfilled. The inoculum source was considered to be microsclerotia of the fungus in soil splashed onto the leaves. The disease is not expected to be a problem in Australia in most years.
Resumo:
Albicidins, a family of phytotoxins and antibiotics produced by Xanthomonas albilineans, are important in sugar cane leaf scald disease development. The albicidin detoxifying bacterium Pantoea dispersa (syn. Erwinia herbicola) SB1403 provides very effective biocontrol against leaf scald disease in highly susceptible sugar cane cultivars. The P. dispersa gene (albD) for enzymatic detoxification of albicidin has recently been cloned and sequenced. To test the role of albicidin detoxification in biocontrol of leaf scald disease, albD was inactivated in P. dispersa by site-directed mutagenesis. The mutants, which were unable to detoxify albicidin, were less resistant to the toxin and less effective in biocontrol of leaf scald disease than their parent strain. This indicates that albicidin detoxification contributes to the biocontrol capacity of P. dispersa against X. albilineans. Rapid growth and ability to acidify media are other characteristics likely to contribute to the competitiveness of P. dispersa against X. albilineans at wound sites used to invade sugar cane.
Resumo:
The syntheses and characterisation of the new macrocyclic hexaamine trans-(5(S),7(S),12(R),14(R)-tetramethyl)-1,4,8,11-tetraazacyclotetradecane-6,13-diamine (L-6) and its Co-III complex are reported. The X-ray crystal structural analyses of [CoL6]Cl-2(ClO4) [monoclinic, space group C2/c, a = 16.468(3) Angstrom, b = 9.7156(7) Angstrom, c = 15.070(3) Angstrom, beta = 119.431(8)degrees, Z = 4] and the closely related cis-diamino-substituted macrocyclic complex [CoL2](ClO4)(3) . 2H(2)O (L-2 = cis-6,13-dimethyl-1,4,8,11-tetraazacyclotetradecane-6,13-diamine) [orthorhombic, space group Pna2(1), a = 16.8220(8) Angstrom, b = 10.416(2) Angstrom, c = 14.219(3) Angstrom, Z = 4] reveal significant variations in the observed Co-N bond lengths and coordination geometries, which may be attributed to the trans or cis disposition of the pendent primary amines. The Co-III/II self-exchange electron transfer rate constants for these and other closely related hexaamines have been determined, and variations of some 2 orders of magnitude are found between pairs of trans and cis isomeric Co-III complexes.
Resumo:
1. Chrysophtharta bimaculata is a native chrysomelid species that can cause chronic defoliation of plantation and regrowth Eucalyptus forests in Tasmania, Australia. Knowledge of the dispersion pattern of C. bimaculata was needed in order to assess the efficiency of an integrated pest management (IPM) programme currently used for its control. 2. Using data from yellow flight traps, local populations of C. bimaculata adults were monitored over a season at spatial scales relevant to commercial forestry: within a 50-ha operational management unit (a forestry 'coupe') and between coupes. In addition, oviposition was monitored over a season at a subset of the between-coupe sites. 3. Dispersion indices (Taylor's Power Law and Iwao's Mean Crowding regression method) demonstrated that C. bimaculata adults were spatially aggregated within and between coupes, although the number of egg-batches laid at the between-coupe scale was uniform. Spatial autocorrelation analysis showed that trap-catches at the within-coupe level were similar (positively autocorrelated) to a radius distance of approximately 110 m, and then dissimilar (negatively autocorrelated) at approximately 250 m. At the between-coupe scale, no repeatable spatial autocorrelation patterns were observed. 4. For any individual site, rapid changes in beetle density were observed to be associated with loosely aggregated flights of beetles into and out of that site. Peak adult catches (> the weekly mean plus standard deviation trap-catch) for a site occurred for a period of 2.0 +/- 0.22 weeks at a time (n = 37), with normally only one or two peaks per site per season. Peak oviposition events for a site occurred on average 1.4 +/- 0.11 times per season and lasted 1.5 +/- 0.12 weeks. 5. Analysis of an extensive data set (n = 417) demonstrated that adult abundance at a site was positively correlated with egg density, but negatively correlated with tree damage (caused by conspecifics) and the presence of conspecific larvae. There was no relationship between adult abundance and a visual estimate of the amount of young foliage on trees. 6. Adults of C. bimaculata are show n to occur in relatively small, mobile aggregations. This means that pest surveys must be both regular (less than 2 weeks apart) and intensive (with sampling points no more than 150 m apart) if beetle populations are to be monitored with confidence. Further refinement of the current IPM strategy must recognize the problems posed by this temporal and spatial patchiness, particularly with regard to the use of biological insecticides, such as Bacillus thuringiensis, for which only a very short operational window exists.
Resumo:
Specific leaf nitrogen (SLN, g/m(2)) is known to affect radiation use efficiency (RUE, g/MJ) in different crops, However, this association and importance have not been well established over a range of different nitrogen regimes for held-grown sunflower (Helianthus annuus L.). An experiment was conducted to investigate different combinations and rates of applied nitrogen on SLN, RUE, and growth of sunflower, A fully irrigated crop was sown on an alluvial-prairie soil (Fluventic Haplustoll) and treated with five combinations of applied nitrogen, Greater nitrogen increased biomass, grain number, and yield, but did not affect harvest index energy-corrected for oil (0.4) or canopy extinction coefficient (0.88), Decreases in biomass accumulation under low nitrogen treatments were associated,vith reductions in leaf area index (LAI) and light interception, When SLN and RUE were examined together, both were less in the anthesis to physiological maturity period, but relatively stable between bud visible and anthesis, However, the effects of canopy SLN on RUE were confounded by high SLN in the top of the canopy and the crop maintaining SLN by reducing LAI, Measurements of leaf CO2 assimilation and theoretical analyses of RUE supported that RUE was related to SLN, The major effect of nitrogen on early growth of sunflower was mediated by leaf area and the distribution of SLN in the canopy rather than direct effects of canopy SLN on RUE alone. Greater responses of RUE to SLN are more evident later in growth, and may be related to the demand of nitrogen by the grain.
Resumo:
The outflow-concentration-time profiles for lignocaine (lidocaine) and its metabolites have been measured after bolus impulse administration of [C-14]lignocaine into the perfused rat liver. Livers from female Sprague-Dawley rats were perfused in a once-through fashion with red-blood-cell-free Krebs-Henseleit buffer containing 0 or 2% bovine serum albumin. Perfusate flow rates of 20 and 30 mL min(-1) were used and both normal and retrograde flow directions were employed. Significant amounts of metabolite were detected in the effluent perfusate soon after lignocaine injection. The early appearance of metabolite contributed to bimodal outflow profiles observed for total C-14 radioactivity. The lignocaine outflow profiles were well characterized by the two-compartment dispersion model, with efflux rate << influx rate. The profiles for lignocaine metabolites were also characterized in terms of a simplified two-compartment dispersion model. Lignocaine was found to be extensively metabolized under the experimental conditions with the hepatic availability ranging between 0.09 and 0.18. Generally lignocaine and metabolite availability showed no significant change with alterations in perfusate flow rate from 20 to 30 mt min(-1) or protein content from 0 to 2%. A significant increase in lignocaine availability occurred when 1200 mu M unlabelled lignocaine was added to the perfusate. Solute mean transit times generally decreased with increasing flow rate and with increasing perfusate protein content. The results confirm that lignocaine pharmacokinetics in the liver closely follow the predictions of the well-stirred model. The increase in lignocaine availability when 1200 mu M unlabelled lignocaine was added to the perfusate is consistent with saturation of the hydroxylation metabolic pathways of lignocaine metabolism.