105 resultados para Layered Media
Resumo:
Numerical methods ave used to solve double diffusion driven reactive flow transport problems in deformable fluid-saturated porous media. in particular, thp temperature dependent reaction rate in the non-equilibrium chemical reactions is considered. A general numerical solution method, which is a combination of the finite difference method in FLAG and the finite element method in FIDAP, to solve the fully coupled problem involving material deformation, pore-fluid flow, heat transfer and species transport/chemical reactions in deformable fluid-saturated porous media has been developed The coupled problem is divided into two subproblems which are solved interactively until the convergence requirement is met. Owing to the approximate nature of the numerical method, if is essential to justify the numerical solutions through some kind of theoretical analysis. This has been highlighted in this paper The related numerical results, which are justified by the theoretical analysis, have demonstrated that the proposed solution method is useful for and applicable to a wide range of fully coupled problems in the field of science and engineering.
Resumo:
Many layered metals such as quasi-two-dimensional organic molecular crystals show properties consistent with a Fermi-liquid description at low temperatures. The effective masses extracted from the temperature dependence of the magnetic oscillations observed in these materials are in the range, m(c)*/m(e) similar to 1 - 7, suggesting that these systems are strongly correlated. However, the ratio m(c)*/m(e) contains both the renormalization due to the electron-electron interaction and the periodic potential of the lattice. We show that for any quasi-two-dimensional band structure, the cyclotron mass is proportional to the density-of-states at the Fermi energy. Due to Luttinger's theorem, this result is also valid in the presence of interactions. We then evaluate m(c) for several model band structures for the beta, kappa, and theta families of (BEDT-TTF)(2)X, where BEDT-TTF is bis-(ethylenedithia-tetrathiafulvalene) and X is an anion. We find that for kappa-(BEDT-TTF)(2)X, the cyclotron mass of the beta orbit, m(c)*(beta) is close to 2 m(c)*(alpha), where m(c)*(alpha) is the effective mass of the alpha orbit. This result is fairly insensitive to the band-structure details. For a wide range of materials we compare values of the cyclotron mass deduced from band-structure calculations to values deduced from measurements of magnetic oscillations and the specific-heat coefficient gamma.
Resumo:
Wrasses (Labridae) are the second largest family of fishes on the: Great Barrier Reef (after the Gobiidae) and, in terms of morphology and lifestyle, one of the most diverse. They occupy all zones of the reef from the very shadow reef flats to deep slopes, feeding on a variety of fauna. Many wrasses also have elaborately patterned bodies and reflect a range of colours from ultraviolet (UV) to far red. As a first step to investigating the visual system of these fishes we measured the transmission properties of the ocular media of 36 species from the Great Barrier Reef, Australia, and Hawaii, California and the Florida Keys, USA. Transmission measurements were made of whole eyes with a window cut into the back, and also of isolated lenses and corneas. Based on the transmission properties of the corneas the species could be split into two distinct groups within which the exact wavelength of the cut-off was variable. One group had visibly yellow corneas, while the corneas of the other group appeared clear to human observers. Five species had ocular media that transmitted wavelengths below 400 nm, making a perception of UV wavelengths for those species possible. Possible functional roles for the different filler types are discussed.
Resumo:
We show how the coupling between the phonons and electrons in a strongly correlated metal can result in phonon frequencies that have a nonmonotonic temperature dependence. Dynamical mean-field theory is used to study the Hubbard-Holstein model that describes the kappa-(BEDT-TTF)(2)X [where BEDT-TTF is bis-(ethylenedithia-tetrathiafulvalene)] family of superconducting molecular crystals. The crossover with increasing temperature from a Fermi liquid to a bad metal produces phonon anomalies that are relevant to recent Raman scattering and acoustic experiments.
Resumo:
We use the finite element method to model three-dimensional convective pore-fluid flow in fluid-saturated porous media when they are heated from below. In particular, we employ the particle-tracking technique to mimic the trajectories of particles in three-dimensional fluid flow problems. The related numerical results demonstrated that: (1) The progressive asymptotic approach procedure, which was previously developed for the finite element modelling of two-dimensional convective pore-fluid flow problems, is equally applicable to the finite element modelling of three-dimensional convective pore-fluid flow in fluid-saturated porous media heated from below. (2) The perturbation of gravity at different planes has a significant effect on the pattern of three-dimensional convective pore-fluid flow and therefore, may influence the pattern of orebody formation and mineralization in three-dimensional hydrothermal systems. Copyright (C) 2001 John Wiley & Sons, Ltd.
Resumo:
We consider the electronic properties of layered molecular crystals of the type theta -D(2)A where A is an anion and D is a donor molecule such as bis-(ethylenedithia-tetrathiafulvalene) (BEDT-TTF), which is arranged in the theta -type pattern within the layers. We argue that the simplest strongly correlated electron model that can describe the rich phase diagram of these materials is the extended Hubbard model on the square lattice at one-quarter filling. In the limit where the Coulomb repulsion on a single site is large, the nearest-neighbor Coulomb repulsion V plays a crucial role. When V is much larger than the intermolecular hopping integral t the ground state is an insulator with charge ordering. In this phase antiferromagnetism arises due to a novel fourth-order superexchange process around a plaquette on the square lattice. We argue that the charge ordered phase is destroyed below a critical nonzero value V, of the order of t. Slave-boson theory is used to explicitly demonstrate this for the SU(N) generalization of the model, in the large-N limit. We also discuss the relevance of the model to the all-organic family beta-(BEDT-TTF)(2)SF5YSO3 where Y=CH2CF2, CH2, CHF.
Resumo:
We use the finite element method to model the heat transfer phenomenon through permeable cracks in hydrothermal systems with upward throughflow. Since the finite element method is an approximate numerical method, the method must be validated before it is used to soh,e any new, kind of problem. However, the analytical solution, which can be used to validate the finite element method and other numerical methods, is rather limited in the literature, especially, for the problem considered here. Keeping this in mind, we have derived analytical solutions for the temperature distribution along the vertical axis of a crack in a fluid-saturated porous layer. After the finite element method is validated by comparing the numerical solution with the analytical solution for the same benchmark problem, it is used to investigate the pore-fluid flow and heat transfer in layered hydrothermal systems with vertical permeable cracks. The related analytical and numerical results have demonstrated that vertical cracks are effective and efficient members to transfer heat energy from the bottom section to the top section in hydrothermal systems with upward throughflow.
Resumo:
We analyze folding phenomena in finely layered viscoelastic rock. Fine is meant in the sense that the thickness of each layer is considerably smaller than characteristic structural dimensions. For this purpose we derive constitutive relations and apply a computational simulation scheme (a finite-element based particle advection scheme; see MORESI et al., 2001) suitable for problems involving very large deformations of layered viscous and viscoelastic rocks. An algorithm for the time integration of the governing equations as well as details of the finite-element implementation is also given. We then consider buckling instabilities in a finite, rectangular domain. Embedded within this domain, parallel to the longer dimension we consider a stiff, layered plate. The domain is compressed along the layer axis by prescribing velocities along the sides. First, for the viscous limit we consider the response to a series of harmonic perturbations of the director orientation. The Fourier spectra of the initial folding velocity are compared for different viscosity ratios. Turning to the nonlinear regime we analyze viscoelastic folding histories up to 40% shortening. The effect of layering manifests itself in that appreciable buckling instabilities are obtained at much lower viscosity ratios (1:10) as is required for the buckling of isotropic plates (1:500). The wavelength induced by the initial harmonic perturbation of the director orientation seems to be persistent. In the section of the parameter space considered here elasticity seems to delay or inhibit the occurrence of a second, larger wavelength. Finally, in a linear instability analysis we undertake a brief excursion into the potential role of couple stresses on the folding process. The linear instability analysis also provides insight into the expected modes of deformation at the onset of instability, and the different regimes of behavior one might expect to observe.
Resumo:
The synthetic organic compound λ(BETS)2FeCl4 undergoes successive transitions from an antiferromagnetic insulator to a metal and then to a superconductor as a magnetic field is increased. We use a Hubbard-Kondo model to clarify the role of the Fe3+ magnetic ions in these phase transition. In the high-field regime, the magnetic field acting on the electron spins is compensated by the exchange field He due to the magnetic ions. This suggests that the field-induced superconducting state is the same as the zero-field superconducting state which occurs under pressure or when the Fe3+ ions are replaced by non-magnetic Ga3+ ions. We show how Hc can be extracted from the observed splitting of the Shybnikov-de Haas frequencies. Furthermore, we use this method of extracting He to predict the field range for field-induced superconductivity in other materials. We also show that at high fields the spin fluctuations of the localized spins are not important.
Resumo:
Exact analytical solutions of the critical Rayleigh numbers have been obtained for a hydrothermal system consisting of a horizontal porous layer with temperature-dependent viscosity. The boundary conditions considered are constant temperature and zero vertical Darcy velocity at both the top and bottom of the layer. Not only can the derived analytical solutions be readily used to examine the effect of the temperature-dependent viscosity on the temperature-gradient driven convective flow, but also they can be used to validate the numerical methods such as the finite-element method and finite-difference method for dealing with the same kind of problem. The related analytical and numerical results demonstrated that the temperature-dependent viscosity destabilizes the temperature-gradient driven convective flow and therefore, may affect the ore body formation and mineralization in the upper crust of the Earth. Copyright (C) 2003 John Wiley Sons, Ltd.
Resumo:
The pathways involved in the maintenance of human embryonic stem (hES) cells remain largely unknown, although some signaling pathways have been identified in mouse embryonic stem (mES) cells. Fibroblast feeder layers are used to maintain the undifferentiated growth of hES cells and an examination of the conditioned media (CM) of human neonatal fibroblasts (HNFs) could provide insights into the maintenance of hES cells. The neonatal foreskin fibroblast line (HNF02) used in this study was shown to have a normal 2n = 46, XY chromosomal complement and to support the undifferentiated growth of the Embryonic Stem Cell International Pte. Ltd.-hES3 cell line. The CM of HNF02 was examined using two-dimensional liquid chromatography-tandem mass spectrometry (2-D LCMS) and two-dimensional electrophoresis (2-DE) followed by matrix-assisted laser desorption/ionization-time of flight tandem mass spectrometry (2-DE/MALDI). A total of 102 proteins were identified, 19 by 2-DE/MALDI, 53 by 2-D LCMS and 30 by both techniques. These proteins were classified into 15 functional groups. Proteins identified in the extracellular matrix and differentiation and growth factor functional categories were considered most likely to be involved in the maintenance of hES cell growth, differentiation and pluripotency as these groups contained proteins involved in a variety of events including cell adhesion, cell proliferation and inhibition of cell proliferation, Writ signaling and inhibition of bone morphogenetic proteins.
Resumo:
Objectives: To evaluate the effect of a radio and newspaper campaign encouraging Italian-speaking women aged 50-69 years to attend a population-based mammography screening program. Methods: A series of radio scripts and newspaper advertisements ran weekly in the Italian-language media over two, four-week periods. Monthly mammography screens were analysed to determine if numbers of Italian-speaking women in the program increased during the two campaign periods, using interrupted time series regression analysis. A survey of Italian-speaking women attending BreastScreen NSW during the campaign period (n=240) investigated whether individuals had heard or seen the advertisements. Results: There was no statistically significant difference in the number of initial or subsequent mammograms in Italian-speaking women between the campaign periods and the period prior to (or after) the campaign. Twenty per cent of respondents cited the Italian media campaign as a prompt to attend. Fifty per cent had heard the radio ad and 30% had seen the newspaper ad encouraging Italian-speaking women to attend BSNSW. The most common prompt to attend was the BSNSW invitation letter, followed by information or recommendation from a GP. Conclusion: Radio and newspaper advertisements developed for the Italian community did not significantly increase attendance to BSNSW. Implications: Measures of program effectiveness based on self-report may not correspond to aggregate screening behaviour. The development of the media campaign in conjunction with the Italian community, and the provision of appropriate levels of resourcing, did not ensure the media campaign's success.
Resumo:
We consider solutions to the second-harmonic generation equations in two-and three-dimensional dispersive media in the form of solitons localized in space and time. As is known, collapse does not take place in these models, which is why the solitons may be stable. The general solution is obtained in an approximate analytical form by means of a variational approach, which also allows the stability of the solutions to be predicted. Then, we directly simulate the two-dimensional case, taking the initial configuration as suggested by the variational approximation. We thus demonstrate that spatiotemporal solitons indeed exist and are stable. Furthermore, they are not, in the general case, equivalent to the previously known cylindrical spatial solitons. Direct simulations generate solitons with some internal oscillations. However, these oscillations neither grow nor do they exhibit any significant radiative damping. Numerical solutions of the stationary version of the equations produce the same solitons in their unperturbed form, i.e., without internal oscillations. Strictly stable solitons exist only if the system has anomalous dispersion at both the fundamental harmonic and second harmonic (SH), including the case of zero dispersion at SH. Quasistationary solitons, decaying extremely slowly into radiation, are found in the presence of weak normal dispersion at the second-harmonic frequency.