55 resultados para Lagrangian bounds in optimization problems
Resumo:
In order to use the finite element method for solving fluid-rock interaction problems in pore-fluid saturated hydrothermal/sedimentary basins effectively and efficiently, we have presented, in this paper, the new concept and numerical algorithms to deal with the fundamental issues associated with the fluid-rock interaction problems. These fundamental issues are often overlooked by some purely numerical modelers. (1) Since the fluid-rock interaction problem involves heterogeneous chemical reactions between reactive aqueous chemical species in the pore-fluid and solid minerals in the rock masses, it is necessary to develop the new concept of the generalized concentration of a solid mineral, so that two types of reactive mass transport equations, namely, the conventional mass transport equation for the aqueous chemical species in the pore-fluid and the degenerated mass transport equation for the solid minerals in the rock mass, can be solved simultaneously in computation. (2) Since the reaction area between the pore-fluid and mineral surfaces is basically a function of the generalized concentration of the solid mineral, there is a definite need to appropriately consider the dependence of the dissolution rate of a dissolving mineral on its generalized concentration in the numerical analysis. (3) Considering the direct consequence of the porosity evolution with time in the transient analysis of fluid-rock interaction problems; we have proposed the term splitting algorithm and the concept of the equivalent source/sink terms in mass transport equations so that the problem of variable mesh Peclet number and Courant number has been successfully converted into the problem of constant mesh Peclet and Courant numbers. The numerical results from an application example have demonstrated the usefulness of the proposed concepts and the robustness of the proposed numerical algorithms in dealing with fluid-rock interaction problems in pore-fluid saturated hydrothermal/sedimentary basins. (C) 2001 Elsevier Science B.V. All rights reserved.
Resumo:
The finite element method is used to simulate coupled problems, which describe the related physical and chemical processes of ore body formation and mineralization, in geological and geochemical systems. The main purpose of this paper is to illustrate some simulation results for different types of modelling problems in pore-fluid saturated rock masses. The aims of the simulation results presented in this paper are: (1) getting a better understanding of the processes and mechanisms of ore body formation and mineralization in the upper crust of the Earth; (2) demonstrating the usefulness and applicability of the finite element method in dealing with a wide range of coupled problems in geological and geochemical systems; (3) qualitatively establishing a set of showcase problems, against which any numerical method and computer package can be reasonably validated. (C) 2002 Published by Elsevier Science B.V.
Resumo:
An equivalent algorithm is proposed to simulate thermal effects of the magma intrusion in geological systems, which are composed of porous rocks. Based on the physical and mathematical equivalence, the original magma solidification problem with a moving boundary between the rock and intruded magma is transformed into a new problem without the moving boundary but with a physically equivalent heat source. From the analysis of an ideal solidification model, the physically equivalent heat source has been determined in this paper. The major advantage in using the proposed equivalent algorithm is that the fixed finite element mesh with a variable integration time step can be employed to simulate the thermal effect of the intruded magma solidification using the conventional finite element method. The related numerical results have demonstrated the correctness and usefulness of the proposed equivalent algorithm for simulating the thermal effect of the intruded magma solidification in geological systems. (C) 2003 Elsevier B.V. All rights reserved.
Resumo:
Teen Triple P is a multilevel system of intervention that is designed to provide parents with specific strategies to promote the positive development of their teenage children as they make the transition into high school and through puberty. The program is based on a combination of education about the developmental needs of adolescents, skills training to improve communication and problem-solving, plus specific modules to deal with common problems encountered by parents and adolescents that can escalate into major conflict and violence. It is designed to increase the engagement of parents of adolescent and pre-adolescent children by providing them with easy access to evidencebased parenting advice and support. This paper presents data collected as part of a survey of over 1400 students in first year high school at 9 Brisbane schools. The survey instrument was constructed to obtain students' reports about behaviour which is known to be associated with their health and wellbeing, and also on the extent to which their parents promoted or discouraged such behaviour at home, at school, and in their social and recreational activities in the wider community. Selected data from the survey were extracted and presented to parents at a series of parenting seminars held at the schools to promote appropriate parenting of teenagers. The objectives were to provide parents with accurate data about teenagers' behaviour, and about teenagers' reports of how they perceived their parents' behaviour. Normative data on parent and teenager behaviour will be presented from the survey as well as psychometric data relating to the reliability and validity of this new measure. Implications of this strategy for increasing parent engagement in parenting programs that aim to reduce behavioural and emotional problems in adolescents will be discussed.
Resumo:
The solidification of intruded magma in porous rocks can result in the following two consequences: (1) the heat release due to the solidification of the interface between the rock and intruded magma and (2) the mass release of the volatile fluids in the region where the intruded magma is solidified into the rock. Traditionally, the intruded magma solidification problem is treated as a moving interface (i.e. the solidification interface between the rock and intruded magma) problem to consider these consequences in conventional numerical methods. This paper presents an alternative new approach to simulate thermal and chemical consequences/effects of magma intrusion in geological systems, which are composed of porous rocks. In the proposed new approach and algorithm, the original magma solidification problem with a moving boundary between the rock and intruded magma is transformed into a new problem without the moving boundary but with the proposed mass source and physically equivalent heat source. The major advantage in using the proposed equivalent algorithm is that a fixed mesh of finite elements with a variable integration time-step can be employed to simulate the consequences and effects of the intruded magma solidification using the conventional finite element method. The correctness and usefulness of the proposed equivalent algorithm have been demonstrated by a benchmark magma solidification problem. Copyright (c) 2005 John Wiley & Sons, Ltd.
Resumo:
This article discusses the ethical justification for and reviews the American evidence on the effectiveness of; treatment for alcohol and heroin dependence that is provided under legal coercion to offenders whose alcohol and drug dependence has contributed to the commission of the offence with which they have been charged or convicted. The article focuses on legally coerced treatment for drink-driving offenders and heroin-dependent property offenders. it outlines the various arguments that have been made for providing such treatment under legal coercion, namely. the over-representation of alcohol and drug dependent persons in prison populations; the contributory causal role of alcohol and other drug problems in the offences that lead to their imprisonment; the high rates of relapse to drug use and criminal involvement after incarceration; the desirability of keeping injecting heroin users out of prisons as a way of reducing the transmission of infectious diseases such as HIV and hepatitis; and the putatively greater cost-effectiveness of treatment compared with incarceration. The ethical objections to legally coerced drug treatment are briefly discussed before the evidence on the effectiveness of legally coerced treatment for alcohol and other drug dependence is reviewed. The evidence, which is primarily from the USA, gives qualified support for some forms of legally coerced drug treatment provided that these programs are well resourced, carefully implemented, and their performance is monitored to ensure that they provide a humane and effective alternative to imprisonment. Expectations about what these programs can achieve also need to be realistic.