33 resultados para LAURENCIELLA GEN. NOV.


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The ultrastructural features of the holotrichous ciliates inhabiting macropodid maruspials were investigated to resolve their morphological similarity to other trichostome ciliates with observed differences in their small subunit rRNA gene sequences. The ultrastructure of Amylovorax dehorityi nov. comb. (formerly Dasytricha dehorityi) was determined by transmission electron microscopy. The somatic kineties are composed of monokinetids whose microtubules show a typical litostome pattern. The somatic cortex is composed of ridges which separate kinety rows, granular ectoplasm and a basal layer of hydrogenosomes lining the tela corticalis. The vestibulum is an invagination of the pellicle lined down one side with kineties (invaginated extensions of the somatic kineties); transverse tubules line the surface of the vestibulum and small nematodesmata surround it forming a cone-like network of struts. Cytoplasmic organelles include hydrogenosomes, irregularly shaped contractile vacuoles surrounded by a sparse spongioplasm, food vacuoles containing bacteria and large numbers of starch granules. This set of characteristics differs sufficiently from those of isotrichids and members of the genus Dasytricha to justify the erection of a new genus (Amylovorax) and a new family (Amylovoracidae). Dasytricha dehorityi, D. dogieli and D. mundayi are reassigned to the new genus Amylovorax and a new species A. quokka is erected. While the gross morphological similarities between Amylovorax and Dasytricha may be explained by convergent evolution, ultrastructural features indicate that these two genera have probably diverged independently from haptorian ancestors by successive reduction of the cortical and vestibular support structures.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Intraerythrocytic bodies identified as haemogregarine gamonts were found in 29% of 97 brown tree snakes (Boiga irregularis) examined during a haematological survey of reptiles in Australasia during 1994-1998. The morphological characteristics of the parasites were consistent with those of Haemogregarina boigae Mackerras, 1961, although the gamonts were slightly larger and lacked red caps but contained distinctive polar grey capsules. Gamonts did not distend host cells but laterally displaced their nuclei. They were contained within parasitophorous vacuoles and possessed typical apicomplexan organelles, including a conoid, polar rings, rhoptries and micronemes. Schizonts producing up to 30 merozoites were detected in endothelial cells of the lungs of 11 snakes. The absence of erythrocytic schizogony suggests the parasites belong to the genus Hepatozoon. Electron microscopy also revealed the presence of curious encapsulated organisms in degenerating erythrocytes. These stages did not possess apical complex organelles and were surrounded by thick walls containing circumferential junctions and interposed strips reminiscent of oocyst sutures.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Anaerobic ammonium oxidation (anammox) is both a promising process in wastewater treatment and a long overlooked microbial physiology that can contribute significantly to biological nitrogen cycling in the world's oceans. Anammox is mediated by a monophyletic group of bacteria that branches deeply in the Planctomycetales. Here we describe a new genus and species of anaerobic ammonium oxidizing planctomycetes, discovered in a wastewater treatment plant (wwtp) treating landfill leachate in Pitsea, UK. The biomass from this wwtp showed high anammox activity (5.0 +/- 0.5 nmol/mg protein/min) and produced hydrazine from hydroxylamine, one of the unique features of anammox bacteria. Eight new planctomycete 16S rRNA gene sequences were present in the 16S rRNA gene clone library generated from the biomass. Four of these were affiliated to known anammox 16S rRNA gene sequences, but branched much closer to the root of the planctomycete line of descent. Fluorescence in situ hybridization (FISH) with oligonucleotide probes specific for these new sequences showed that two species (belonging to the same genus) together made up > 99% of the planctomycete population which constituted 20% of the total microbial community. The identification of these organisms as typical anammox bacteria was confirmed with electron microscopy and lipid analysis. The new species, provisionally named Candidatus Scalindua brodae and Scalindua wagneri considerably extend the biodiversity of the anammox lineage on the 16S rRNA gene level, but otherwise resemble known anammox bacteria. Simultaneously, another new species of the same genus, Candidatus Scalindua sorokinii, was detected in the water column of the Black Sea, making this genus the most widespread of all anammox bacteria described so far.