73 resultados para Kac-Moody algebras


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Hedley er al. (1982) developed what has become the most widely used land modified), phosphorus (P) fractionation technique. It consists of sequential extraction of increasingly less phytoavailable P pools. Extracts are centrifuged at up to 25000 g (RCF) and filtered to 0.45 mu m to ensure that soil is not lost between extractions. In attempting to transfer this method to laboratories with limited facilities, it was considered that access to high-speed centrifuges, and the cost of frequent filtration may prevent adoption of this P fractionation technique. The modified method presented here was developed to simplify methodology, reduce cost, and therefore increase accessibility of P fractionation technology. It provides quantitative recovery of soil between extractions, using low speed centrifugation without filtration. This is achieved by increasing the ionic strength of dilute extracts, through the addition of NaCl, to flocculate clay particles. Addition of NaCl does not change the amount of P extracted. Flocculation with low speed centrifugation produced extracts comparable with those having undergone filtration (0.025 mu m). A malachite green colorimetric method was adopted for inorganic P determination, as this simple manual method provides high sensitivity with negligible interference from other anions. This approach can also be used for total P following digestion, alternatively non-discriminatory methods, such as inductively coupled plasma atomic emission spectroscopy, may be employed.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A multiparametric extension of the anisotropic U model is discussed which maintains integrability. The R-matrix solving the Yang-Baxter equation is obtained through a twisting construction applied to the underlying U-q(sl (2/1)) superalgebraic structure which introduces the additional free parameters that arise in the model. Three forms of Bethe ansatz solution for the transfer matrix eigenvalues are given which we show to be equivalent.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Integrable Kondo impurities in two cases of one-dimensional q-deformed t-J models are studied by means of the boundary Z(2)-graded quantum inverse scattering method. The boundary K matrices depending on the local magnetic moments of the impurities are presented as nontrivial realizations of the reflection equation algebras in an impurity Hilbert space. Furthermore, these models are solved by using the algebraic Bethe ansatz method and the Bethe ansatz equations are obtained.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper presents a means of structuring specifications in real-time Object-Z: an integration of Object-Z with the timed refinement calculus. Incremental modification of classes using inheritance and composition of classes to form multi-component systems are examined. Two approaches to the latter are considered: using Object-Z's notion of object instantiation and introducing a parallel composition operator similar to those found in process algebras. The parallel composition operator approach is both more concise and allows more general modelling of concurrency. Its incorporation into the existing semantics of real-time Object-Z is presented.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The integral of the Wigner function of a quantum-mechanical system over a region or its boundary in the classical phase plane, is called a quasiprobability integral. Unlike a true probability integral, its value may lie outside the interval [0, 1]. It is characterized by a corresponding selfadjoint operator, to be called a region or contour operator as appropriate, which is determined by the characteristic function of that region or contour. The spectral problem is studied for commuting families of region and contour operators associated with concentric discs and circles of given radius a. Their respective eigenvalues are determined as functions of a, in terms of the Gauss-Laguerre polynomials. These polynomials provide a basis of vectors in a Hilbert space carrying the positive discrete series representation of the algebra su(1, 1) approximate to so(2, 1). The explicit relation between the spectra of operators associated with discs and circles with proportional radii, is given in terms of the discrete variable Meixner polynomials.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The main problem with current approaches to quantum computing is the difficulty of establishing and maintaining entanglement. A Topological Quantum Computer (TQC) aims to overcome this by using different physical processes that are topological in nature and which are less susceptible to disturbance by the environment. In a (2+1)-dimensional system, pseudoparticles called anyons have statistics that fall somewhere between bosons and fermions. The exchange of two anyons, an effect called braiding from knot theory, can occur in two different ways. The quantum states corresponding to the two elementary braids constitute a two-state system allowing the definition of a computational basis. Quantum gates can be built up from patterns of braids and for quantum computing it is essential that the operator describing the braiding-the R-matrix-be described by a unitary operator. The physics of anyonic systems is governed by quantum groups, in particular the quasi-triangular Hopf algebras obtained from finite groups by the application of the Drinfeld quantum double construction. Their representation theory has been described in detail by Gould and Tsohantjis, and in this review article we relate the work of Gould to TQC schemes, particularly that of Kauffman.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We describe the twisted affine superalgebra sl(2\2)((2)) and its quantized version U-q[sl(2\2)((2))]. We investigate the tensor product representation of the four-dimensional grade star representation for the fixed-point sub superalgebra U-q[osp(2\2)]. We work out the tensor product decomposition explicitly and find that the decomposition is not completely reducible. Associated with this four-dimensional grade star representation we derive two U-q[osp(2\2)] invariant R-matrices: one of them corresponds to U-q [sl(2\2)(2)] and the other to U-q [osp(2\2)((1))]. Using the R-matrix for U-q[sl(2\2)((2))], we construct a new U-q[osp(2\2)] invariant strongly correlated electronic model, which is integrable in one dimension. Interestingly this model reduces in the q = 1 limit, to the one proposed by Essler et al which has a larger sl(2\2) symmetry.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Integrable extended Hubbard models arising from symmetric group solutions are examined in the framework of the graded quantum inverse scattering method. The Bethe ansatz equations for all these models are derived by using the algebraic Bethe ansatz method.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Three kinds of integrable Kondo impurity additions to one-dimensional q-deformed extended Hubbard models are studied by means of the boundary Z(2)-graded quantum inverse scattering method. The boundary K matrices depending on the local magnetic moments of the impurities are presented as nontrivial realisations of the reflection equation algebras in an impurity Hilbert space. The models are solved by using the algebraic Bethe ansatz method, and the Bethe ansatz equations are obtained.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Grobner bases have been generalised to polynomials over a commutative ring A in several ways. Here we focus on strong Grobner bases, also known as D-bases. Several authors have shown that strong Grobner bases can be effectively constructed over a principal ideal domain. We show that this extends to any principal ideal ring. We characterise Grobner bases and strong Grobner bases when A is a principal ideal ring. We also give algorithms for computing Grobner bases and strong Grobner bases which generalise known algorithms to principal ideal rings. In particular, we give an algorithm for computing a strong Grobner basis over a finite-chain ring, for example a Galois ring.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The Izergin-Korepin model on a semi-infinite lattice is diagonalized by using the level-one vertex operators of the twisted quantum affine algebra U-q[((2))(2)]. We give the bosonization of the vacuum state with zero particle content. Excitation states are given by the action of the vertex operators on the vacuum state. We derive the boundary S-matrix. We give an integral expression of the correlation functions of the boundary model, and derive the difference equations which they satisfy. (C) 2001 Elsevier Science B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Codes C-1,...,C-M of length it over F-q and an M x N matrix A over F-q define a matrix-product code C = [C-1 (...) C-M] (.) A consisting of all matrix products [c(1) (...) c(M)] (.) A. This generalizes the (u/u + v)-, (u + v + w/2u + v/u)-, (a + x/b + x/a + b + x)-, (u + v/u - v)- etc. constructions. We study matrix-product codes using Linear Algebra. This provides a basis for a unified analysis of /C/, d(C), the minimum Hamming distance of C, and C-perpendicular to. It also reveals an interesting connection with MDS codes. We determine /C/ when A is non-singular. To underbound d(C), we need A to be 'non-singular by columns (NSC)'. We investigate NSC matrices. We show that Generalized Reed-Muller codes are iterative NSC matrix-product codes, generalizing the construction of Reed-Muller codes, as are the ternary 'Main Sequence codes'. We obtain a simpler proof of the minimum Hamming distance of such families of codes. If A is square and NSC, C-perpendicular to can be described using C-1(perpendicular to),...,C-M(perpendicular to) and a transformation of A. This yields d(C-perpendicular to). Finally we show that an NSC matrix-product code is a generalized concatenated code.