81 resultados para K-CL COTRANSPORTER


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Necessary conditions on n, m and d are given for the existence of an edge-disjoint decomposition of K-n\K-m into copies of the graph of a d-dimensional cube. Sufficiency is shown when d = 3 and, in some cases, when d = 2(t). We settle the problem of embedding 3-cube decompositions of K-m into 3-cube decompositions of K-n; where n greater than or equal to m.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

1. Intracellular recordings were made from neurones in the rat otic ganglion in vitro in order to investigate their morphological, physiological and synaptic properties. We took advantage of the simple structure of these cells to test for a possible role of calcium influx via nicotinic acetylcholine receptors during synaptic transmission. 2. Cells filled with biocytin comprised a homogeneous population with ovoid somata and sparse dendritic trees. Neurones had resting membrane potentials of -53 +/- 0.7 mV (n = 69), input resistances of 112 + 7 M Omega, and membrane time constants of 14 +/- 0.9 ms (n = 60). Upon depolarization, all cells fired overshooting action potentials which mere followed by an apamin-sensitive after-hyperpolarization (AHP). In response to a prolonged current injection, all neurones fired tonically. 3. The repolarization phase of action potentials had a calcium component which was mediated by N-type calcium channels. Application of omega-conotoxin abolished both the repolarizing hump and the after-hgrperpolarization suggesting that calcium influx via N-type channels activates SK-type calcium-activated potassium channels which underlie the AHP. 4. The majority (70%) of neurones received innervation from a single preganglionic fibre which generated a suprathreshold excitatory postsynaptic potential mediated by nicotinic acetylcholine receptors. The other 30% of neurones also had one or more subthreshold nicotinic inputs. 5. Calcium influx via synaptic nicotinic receptors contributed to the AHP current, indicating that this calcium has access to the calcium-activated potassium channels and therefore plays a role in regulating cell excitability.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The dependence of currents through the cyclic nucleotide-gated (CNG) channels of mammalian olfactory receptor neurons (ORNs) on the concentration of NaCl was studied in excised inside-out patches from their dendritic knobs using the patch-clamp technique. With a saturating concentration (100 mu M) of adenosine 3', 5'-cyclic monophosphate (cAMP), the changes in the reversal potential of macroscopic currents were studied at NaCl concentrations from 25 to 300 mM. In symmetrical NaCl solutions without the addition of divalent cations, the current-voltage relations were almost linear, reversing close to O mV. When the external NaCl concentration was maintained at 150 mM and the internal concentrations were varied, the reversal potentials of the cAMP-activated currents closely followed the Na+ equilibrium potential indicating that P-Cl/P-Na approximate to 0. However, at low external NaCl concentrations (less than or equal to 100 mM) there was some significant chloride permeability. Our results further indicated that Na+ currents through these channels: (i) did not obey the independence principle; (ii) showed saturation kinetics with K(m)s in the range of 100-150 mM and (iii) displayed a lack of voltage dependence of conductance in asymmetric solutions that suggested that ion-binding sites were situated midway along the channel. Together, these characteristics indicate that the permeation properties of the olfactory CNG channels are significantly different from those of photoreceptor CNG channels.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The hallmark of Alzheimer's disease is the cerebral deposition of amyloid which is derived from the amyloid precursor protein (APP). The function of APP is unknown but there is increasing evidence for the role of APP in cell-cell and/or cell-matrix interactions. Primary cultures of murine neurons were treated with antisense oligonucleotides to down-regulate APP. This paper presents evidence that APP mediates a substrate-specific interaction between neurons and extracellular matrix components collagen type I, laminin and heparan sulphate proteoglycan but not fibronectin or poly-L-lysine. It remains to be determined whether this effect is the direct result of APP-matrix interactions, or whether an intermediary pathway is involved. (C) 1997 Elsevier Science B.V.

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Motivated by application of twisted current algebra in description of the entropy of Ads(3) black hole, we investigate the simplest twisted current algebra sl(3, c)(k)((2)). Free field representation of the twisted algebra, and the corresponding twisted Sugawara energy-momentum tensor are obtained by using three (beta, gamma) pairs and two scalar fields. Primary fields and two screening currents of the first kind are presented. (C) 2001 Published by Elsevier Science B.V.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The number of 1-factors (near 1-factors) that mu 1-factorizations (near 1-factorizations) of the complete graph K-v, v even (v odd), can have in common, is studied. The problem is completely settled for mu = 2 and mu = 3.

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background. Potassium (K) deficiency (KD) and/or hypokalemia have been associated with disturbances of phosphate metabolism The purpose of the present study was to determine the cellular mechanisms that mediate the impairment of renal proximal tubular Na/Pi cotransport in a model of K deficiency in the rat. Methods. K deficiency in the rat was achieved by feeding rats a K-deficient diet for seven days. which resulted in a marked decrease in serum and tissue K content. Results. K deficiency resulted in a marked increase in urinary Pi excretion and a decrease in the V-max of brush-border membrane (BBM) Na/Pi cotransport activity (1943 95 in control vs. 1183 +/- 99 pmol/5 sec/mg BBM protein in K deficiency. P < 0.02). Surprisingly. the decrease in Na/Pi cotransport activity was associated with increases in the abundance of type I (NaPi-1). and type II (NaPi-2) and type III (Glvr-1) Na/Pi protein. The decrease in Na/Pi transport was associated with significant alterations in BBM lipid composition, including increases in sphingomyelin. glucosylceramide. and ganglioside GM, content and a decrease in BBM lipid fluidity. Inhibition of glucosylceramide synthesis resulted in increases in BBM Na/Pi cotransport activity in control and K-deficient rats. The resultant Na/Pi cotransport activity in K-deficit nt rats was the same as in control rats (1148 +/- 52 in control + PDMP vs. 11.52 +/- 61 pmol/5 sec/mg BBM protein in K deficiency + PDMP). These changes in transport activity occurred independent of further changes in BBM NaPi-2 protein or renal cortical NaPi-2 mRNA abundance. Conclusion. K deficiency in the rat causes inhibition of renal Na/Pi cotransport activity by post-translational mechanisms that are mediated in part through alterations in glucosylceramide content and membrane lipid dynamics.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Cystic fibrosis (CF) is a complex disease affecting epithelial ion transport. There are not many diseases like CF that have triggered such intense research activities. The complexity of the disease is due to mutations in the CFTR protein, now known to be a Cl- channel and a regulator of other transport proteins. The various interactions and the large number of disease-causing CFTR mutations is the reason for a variable genotype-phenotype correlation and sometimes unpredictable clinical manifestation. Nevertheless, the research of the past 10 years has resulted in a tremendous increase in knowledge, not only in regard to CFTR but also in regard to molecular interactions and completely new means of ion channel and gene therapy.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The cystic fibrosis transmembrane conductance regulator (CFTR) has been shown previously to be regulated by inhibitory G proteins. In the present study, we demonstrate inhibition of CFTR by alphaG(i2) and alphaG(i1), but not alphaG(0), in Xenopus oocytes. We further examined whether regulators of G protein signaling (RGS) proteins interfere with alphaG(i)-dependent inhibition of CFTR. Activation of CFTR by IBMX and forskolin was attenuated in the presence of alphaG(i2), indicating inhibition of CFTR by alphaG(i2) in Xenopus oocytes. Coexpression of the proteins RGS3 and RGS7 together with CFTR and alphaG(i2) partially recovered activation by IBMX/forskolin. 14-3-3, a protein that is known to interfere with RGS proteins, counteracted the effects of RGS3. These data demonstrate the regulation of CFTR by alphaG(i) in Xenopus oocytes. Because RGS proteins interfere with the G protein-dependent regulation of CFTR, this may offer new potential pathways for pharmacological intervention in cystic fibrosis. (C) 2001 Academic Press.