142 resultados para Insect chemosterilization.
Resumo:
A perennial problem in recombinant protein expression is low yield of the product of interest. A strategy which has been shown to increase the production of baculovirus-expressed proteins is to utilise fed-batch cultures. One disadvantage of this approach is the time-consuming task of optimising the feeding strategy. Previously, a statistical optimisation routine was applied to develop a feeding strategy that increased the yield of beta-Galactosidase (beta-Gal) by 2.4-fold (Biotechnol. Bioeng, 59 (1998) 178). This involves the single addition of nutrient concentrates (amino acids, lipids. glucose and yeastolate ultrafiltrate) into Sf9 cell cultures grown in SF900II medium. In this study, it is demonstrated that this optimised fed-batch strategy developed for a high-yielding intracellular product beta-Gal could be applied successfully to a relatively low-yielding glycosylated and secreted product such as the dengue virus glycoprotein NS1. Optimised batch infections yielded 4 mug/ml of NS1 at a peak cell density of 4.2 x 10(6) cells/ml. In contrast. optimised fed-batch infections exhibited a 3-fold improvement in yield, with 12 mug ml of NS1 produced at a peak cell density of 11.3 x 10(6) cells/ml. No further improvements in yield were recorded when the feed volumes were doubled and the peak cell density was increased to 23 x 10(6) cells/ml, unless the cultures were stimulated by the addition of 4 mug/ml of 20-Hydroxyecdysone (an insect moulting hormone). In this case, the NS1 yield was increased to 20 mug/ml. which was nearly 5-fold higher than optimised batch cultures. (C) 2002 Elsevier Science B.V. All rights reserved.
Resumo:
Quantification of calcium in the cuticle of the fly larva Exeretonevra angustifrons was undertaken at the micron scale using wavelength dispersive X-ray microanalysis, analytical standards, and a full matrix correction. Calcium and phosphorus were found to be present in the exoskeleton in a ratio that indicates amorphous calcium phosphate. This was confirmed through electron diffraction of the calcium-containing tissue. Due to the pragmatic difficulties of measuring light elements, it is not uncommon in the field of entomology to neglect the use of matrix corrections when performing microanalysis of bulk insect specimens. To determine, firstly, whether such a strategy affects the outcome and secondly, which matrix correction is preferable, phi-rho (z) and ZAF matrix corrections were contrasted with each other and without matrix correction. The best estimate of the mineral phase was found to be given by using the phi-rho (z) correction. When no correction was made, the ratio of Ca to P fell outside the range for amorphous calcium phosphate, possibly leading to flawed interpretation of the mineral form when used on its own.
Resumo:
Examination of the chemistry of a number of Australian insect species provided examples of unusual structures and encouraged determinations of their absolute stereochemistry by stereocontrolled syntheses and chromatographic comparisons. Inter alia, studies with the fruit-spotting bug (Amblypelta nitida), certain parasitic wasps (Biosteres sp.), the aposematic shield bug (Cantao parentum), and various species of scarab grubs are summarized. The determination of enantiomeric excesses (ee's) for component epoxides, lactones, spiroacetals, and allenes are described. Stereochemical and related aspects of the biosynthesis of spiroacetals in certain fruit-fly species (Bactrocerae sp.) are also presented.
Resumo:
Early pregnancy factor (EPF) is a secreted protein with growth regulatory and immunomodulatory properties. It is an extracellular form of the mitochondrial matrix protein chaperonin 10 (Cpn10), a molecular chaperone. An understanding of the mechanism of action of EPF and an exploration of therapeutic potential has been limited by availability of purified material. The present study was undertaken to develop a simple high-yielding procedure for preparation of material for structure/function studies, which could be scaled up for therapeutic application. Human EPF was expressed in Sf9 insect cells by baculovirus infection and in Escherichia coli using a heat inducible vector. A modified molecule with an additional N-terminal alanine was also expressed in E coli. The soluble protein was purified from cell lysates via anion exchange (negative-binding mode), cation exchange, and hydrophobic interaction chromatography, yielding similar to42 and 36 mg EPF from 300 ml bacterial and I L Sf9 cultures, respectively. The preparations were highly purified ( greater than or equal to99% purity on SDS-PAGE for the bacterial products and greater than or equal to97% for that of insect cells) and had the expected mass and heptameric structure under native conditions, as determined by mass spectrometry and gel permeation chromatography, respectively. All recombinant preparations exhibited activity in the EPF bioassay, the rosette inhibition test, with similar potency both to each other and to the native molecule. In two in vivo assays of immuno suppressive activity, the delayed-type hypersensitivity reaction and experimental autoimmune encephalomyelitis, the insect cell and modified bacterial products, both with N-terminal additions (acetylation or amino acid), exhibited similar levels of suppressive activity, but the bacterial product with no N-terminal modification had no effect in either assay. Studies by others have shown that N-terminal addition is not necessary for Cpn10 activity. By defining techniques for facile production of molecules with and without immunosuppressive properties, the present studies make it possible to explore mechanisms underlying the distinction between EPF and Cpn10 activity. (C) 2003 Elsevier Inc. All rights reserved.
Resumo:
Polydnaviruses (PDVs) are endogenous particles that are used by some endoparasitic hymenoptera to disrupt host immunity and development. Recent analyses of encapsidated PDV genes have increased the number of known PDV gene families, which are often closely related to insect genes. Several PDV proteins inactivate host haemocytes by damaging their actin cytoskeleton. These proteins share no significant sequence homology and occur in polyphyletic PDV genera, possibly indicating that convergent evolution has produced functionally similar immune-suppressive molecules causing a haemocyte phenotype characterised by damaged cytoskeleton and inactivation. These phenomena provide further insights into the immune-suppressive activity of PDVs and raise interesting questions about PDV evolution, a topic that has puzzled researchers ever since the discovery of PDVs.
Resumo:
Biological control is the purposeful introduction of parasites, predators, and pathogens to reduce or suppress pest populations. Wolbachia are inherited bacteria of arthropods that have recently attracted attention for their potential as new biocontrol agents. Wolbachia manipulate host reproduction by using several strategies, one of which is cytoplasmic incompatibility (CI) [Stouthamer, R., Breeuwer, J. A. J. & Hurst, G. D. D. (1999) Annu. Rev. Microbiol. 53,71-102]. We established Wolbachia-infected lines of the medfly Ceratitis capitata using the infected cherry fruit fly Rhagoletis cerasi as donor. Wolbachia induced complete CI in the novel host. Laboratory cage populations were completely suppressed by single releases of infected males, suggesting that Wolbachia-induced CI could be used as a novel environmentally friendly tool for the control of medfly populations. The results also encourage the introduction of Wolbachia into pest and vector species of economic and hygenic relevance to suppress or modify natural populations.
Resumo:
Trichogramma species are mass-produced for biological control using host eggs. Artificial diets have been developed to reduce production costs, however, most include insect haemolymph as a major component, which still results in a significant expense. Medium conditioned with insect cell lines has produced some success as a haemolymph replacement in artificial diets for several parasitoid wasp species. Trichogramma australicum Girault (Hymenoptera: Trichogrammatidae) was the first species to develop successfully to the adult stage on diets containing concentrated HeliothiS zea (Boddie) (Lepidoptera: Noctuidae) cells. Tricho-gramma pretiosum Riley (Hymenoptera: Trichogrammatidae) was subsequently grown to the adult stage on a similar cell line diet. This success encouraged a systematic investigation into the use of insect cell lines in Trichogramma artificial diets. We compared the effect of diets containing insect cells with diets containing conditioned cell line media. Diets containing insect cells produced significantly more pupae than diets containing conditioned medium and, although not significant, produced a higher number of adults. Second, we compared the effect of diets containing cell lines established from ovary-associated tissue of H. zea and embryo tissue of Aedes albopictus (Skuse) (Diptera: Culicidae) on T pretiosum development. Trichogramma pretiosum development was not significantly different on diets containing cells from the two origins and tissue types. Third, the effect of cell storage on T pretiosum development was observed. HeliothiS zea cells in medium were stored at 4 degrees C and room temperature (22 degrees C for one, two, four and seven days before addition to artificial diets. Cell viability was calculated for these storage treatments. HeliothiS zea cells could be stored at 4 degrees C for up to seven days with no detrimental effect on T pretiosum development. Tricho-gramma pretiosum development did not depend on cell viability. The use of insect cell lines as a haemolymph replacement has the potential to significantly reduce production costs and simplify Trichogramma artificial diets with the eventual aim of replacing host production in mass rearing facilities. (c) 2005 Elsevier Inc. All rights reserved.
Resumo:
Existing models describe the product release from baculovirus infected insect cells as an unspecific protein leakage occurring in parallel with protein production. The model presented here shows that the observed product release of normally non-secreted proteins can be described through cell death alone. This model avoids the implicit non-physiological assumption of previous models that cells permeable to recombinant protein as well as trypan blue continue to produce protein. (c) 2005 Wiley Periodicals, Inc.
Resumo:
Many insect parasitoids that deposit their eggs inside immature stages of other insect species inactivate the cellular host defence to protect the growing embryo from encapsulation. Suppression of encapsulation by polydnavirus-encoded immune-suppressors correlates with specific alterations in hemocytes, mainly cytoskeletal rearrangements and actin-cytoskeleton breakdown. We have previously shown that the Cotesia rubecula polydnavirus gene product CrV1 causes immune suppression when injected into the host hemocoel. CrV1 is taken up by hemocytes although no receptors have been found to bind the protein. Instead CrV1 uptake depends on dimer formation, which is required for interacting with lipophorin, suggesting a CrV1-lipophorin complex internalisation by hemocytes. Since treatment of hemocytes with oligomeric lectins and cytochalasin D can mimic the effects of CrV1, we propose that some dimeric and oligomeric adhesion molecules are able to cross-link receptors on the cell surface and depolymerise actin by leverage-mediated clearance reactions in the hemolymph.
Resumo:
Recently, we identified a large number of ultraconserved (uc) sequences in noncoding regions of human, mouse, and rat genomes that appear to be essential for vertebrate and amniote ontogeny. Here, we used similar methods to identify ultraconserved genomic regions between the insect species Drosophila melanogaster and Drosophila pseudoobscura, as well as the more distantly related Anopheles gambiae. As with vertebrates, ultraconserved sequences in insects appear to Occur primarily in intergenic and intronic sequences, and at intron-exon junctions. The sequences are significantly associated with genes encoding developmental regulators and transcription factors, but are less frequent and are smaller in size than in vertebrates. The longest identical, nongapped orthologous match between the three genomes was found within the homothorax (hth) gene. This sequence spans an internal exon-intron junction, with the majority located within the intron, and is predicted to form a highly stable stem-loop RNA structure. Real-time quantitative PCR analysis of different hth splice isoforms and Northern blotting showed that the conserved element is associated with a high incidence of intron retention in hth pre-mRNA, suggesting that the conserved intronic element is critically important in the post-transcriptional regulation of hth expression in Diptera.
Resumo:
Ascoviruses (AVs) infect larvae of various insect pests belonging to the family Noctuidae. The result of AV infection in the hosts is cleavage of infected cells into vesicles, a unique feature of AV infection. Since insect cell lines facilitate the study of virus life cycles, attempts were made to analyze Heliothis virescens AV (HvAV3e) infection in several cell lines and compare cell pathology to larval infection. In this study, replication and cytopathological effects of HvAV3e on four different cell lines were investigated. HvAV3e replication was confirmed in three noctuid cell lines from Spodoptera frugiperda (Sf9) and Helicoverpa zea (BCIRL-Hz-AM1 and FB33). However, the virus did not replicate in the non-noctuid insect cell line from Pieris rapae (Pieridae). Despite replication of the virus in the three permissive cell lines, the cytopathological effects of the virus were significantly different from that of larval infection.