92 resultados para Innate Immune-Responses
Resumo:
At the present time, it is clear that Th1 responses afford protection against the fungi; however, the development, maintenance and function of the protective immune responses are complex mechanisms and are influenced by multiple factors. The route of infection has been shown to affect initial cytokine production and, consequently, the induction of protective Th1 responses. The ability of different isolates of the same fungal agent to induce and sustain a protective response has also been emphasized. Protective immune responses have been shown to vary in genetically different mouse strains after infection. In addition, these protective responses, such as cellular influx and cytokine production, also vary within the same animal depending on the tissue infected. The functional dominance of certain cytokines over others in influencing development and maintenance of protective responses has been discussed. Certain cytokines may act differently in hosts lacking important components of their innate or immune repertoire. It is evident from these presentations that a more comprehensive understanding of the protective mechanisms against different fungal agents is emerging. However, there is still much to learn before cytokine modulatory therapy can be used effectively without risk in the human host.
Resumo:
Trichomonas vaginalis is a flagellated protozoan which causes trichomoniasis, a sexually transmitted disease of the human genitourinary tract, The importance of the alternative complement pathway in host defence against T. vaginalis was investigated in vitro. Kinetic studies utilising immunofixation following electrophoresis showed that both a strongly and weakly virulent strain of T, vaginalis activated murine serum C3. In vivo studies with congenic-resistant, C5-deficient, B10.D2/OSn- and C5-sufficient, B10.D2/nSn mice showed that the presence of C5 is a significant factor in the innate host resistance to primary infection with a strongly virulent, but not a weakly virulent trichomonad strain.
Resumo:
Natural tumor surveillance capabilities of the host were investigated in six different mouse tumor models where endogenous interleukin (IL)-12. does or does not dictate the efficiency of the innate immune response. Gene-targeted and lymphocyte subset-depleted mice were used to establish the relative importance of natural killer (NK) and NK1.1(+) T (NKT) cells in protection from tumor initiation and metastasis. In the models examined, CD3(-) NK cells were responsible for tumor rejection and protection from metastasis in models where control of major histocompatibility complex class I-deficient tumors was independent of IL-12, A protective role for NKT cells was only observed when tumor rejection required endogenous IL-12 activity. In particular, T cell receptor J alpha 281 gene-targeted mice confirmed a critical function for NKT cells in protection from spontaneous tumors initiated by the chemical carcinogen, methylcholanthrene. This is the first description of an antitumor function for NKT cells in the absence of exogenously administered potent stimulators such as IL-12 or alpha-galactosylceramide.
Resumo:
The innate immune system of insects consists of humoral and cellular components involved in the recognition of and responses to intruding foreign micro- or macroorganisms. Several molecules have been identified so far that recognize molecular patterns present on microorganisms, such as lipopolysaccharides, peptidoglycans and lipoteichonic acid. These molecules, acting as opsonins, trigger immune responses such as phagocytosis, nodule formation, melanization and encapsulation. Here, we investigated the role of calreticulin (CRT) present on the surface of Pieris rapae hemocytes in phagocytosis. Comparative phagocytosis assays using yeast cells showed that hemocytes from different insects exhibit significant variation in their phagocytosing potential and relative CRT involvement. (C) 2003 Elsevier Science Ltd. All rights reserved.
Resumo:
HLA-A*0201 transgenic, H-2D(b)/mouse beta2-microglobulin double-knockout mice were used to compare and optimize the immunogenic potential of 17HIV 1-derived, HLA-A0201-restricted epitopic peptides. A tyrosine substitution in position 1 of the epitopic peptides, which increases both their affinity for and their HLA-A0201 molecule stabilizing capacity, was introduced in a significant proportion, having verified that such modifications enhance their immunogenicity in respect of their natural antigenicity. Based on these results, a 13-polyepitope construct was inserted in the pre-S2 segment of the hepatitis B middle glycoprotein and used for DNA immunization. Long-lasting CTL responses against most of the inserted epitopes could be elicited simultaneously in a single animal with cross-recognition in several cases of their most common natural variants.
Resumo:
Dendritic cells (DC) have a key role in controlling the immune response, by determining the outcome of antigen presentation to T cells. Through costimulatory molecules and other factors, DC are involved in the maintenance of peripheral tolerance through modulation of the immune response. This modulation occurs both constitutively, and in inflammation, in order to prevent autoimmunity and to control established immune responses. Dendritic cell control of immune responses may be mediated through cytokine or cell-contact dependent mechanisms. The molecular and cellular basis of these controls is being understood at an increasingly more complex level. This understanding is reaching a level at which DC-based therapies for the induction of immune regulation in autoimmunity can be tested in vivo. This review outlines the current state of knowledge of DC in immune tolerance, and proposes how DC might control both T cell responses, and themselves, to prevent autoimmunity and maintain peripheral tolerance.
Resumo:
The Kunjin replicon was used to express a polytope that consisted of seven hepatitis C virus cytotoxic T lymphocyte epitopes and one influenza cytotoxic T lymphocyte epitope for vaccination studies. The self-replicating nature of, and expression from, the ribonucleic acid was confirmed in vitro . Initial vaccinations with one dose of Kun-Poly ribonucleic acid showed that an influenza-specific cytotoxic T lymphocyte response was elicited more efficiently by intradermal inoculation compared with intramuscular delivery. Two micrograms of ribonucleic acid delivered in the ear pinnae of mice was sufficient to elicit a detectable cytotoxic T lymphocyte response 10 days post-vaccination. Further vaccination studies showed that four of the seven hepatitis C virus cytotoxic T lymphocyte epitopes were able to elicit weak cytotoxic T lymphocyte responses whereas the influenza epitope was able to elicit strong, specific cytotoxic T lymphocyte responses following three doses of Kun-Poly ribonucleic acid. These studies vindicate the use of the Kunjin replicon as a vector to deliver encoded proteins for the development of cell-mediated immune responses.
Resumo:
Although T cells have been implicated in the pathogenesis and are considered to be central both in progression and control of the chronic inflammatory periodontal diseases, the precise contribution of T cells to the regulation of tissue destruction has not been fully elucidated. Current dogma suggests that immunity to infection is controlled by distinct T helper 1 (Th1) and T helper 2 (Th2) subsets of T cells classified on the basis of their cytokine profile. Further, a subset of T cells with immunosuppressive function and cytokine profile distinct from Th1 or Th2 has been described and designated as regulatory T cells. Although these regulatory T cells have been considered to maintain self-tolerance resulting in the suppression of auto-immune responses, recent data suggest that these cells may also play a role in preventing infection-induced immunopathology. In this review, the role of functional and regulatory T cells in chronic inflammatory periodontal diseases will be summarized. This should not only provide an insight into the relationship between the immune response to periodontopathic bacteria and disease but should also highlight areas of development for potentially new therapeutic modalities.
Resumo:
Antigen-specific suppression of a previously primed immune response is a major challenge for immunotherapy of autoimmune disease. ReIB activation is required for myeloid DC differentiation. Here, we show that antigen-exposed DCs in which ReIB function is inhibited lack cell surface CD40, prevent priming of immunity, and suppress previously primed immune responses. DCs generated from CD40-deficient mice similarly confer suppression. Regulatory CD4(+) T cells induced by the DCs transfer antigen-specific Infectious tolerance to primed recipients in an interleukin10-dependent fashion. Thus CD40, regulated by ReIB activity, determines the consequences of antigen presentation by myeloid DCs. These observations have significance for autoimmune immunotherapy and suggest a mechanism by which peripheral tolerance might be constitutively maintained by RelB(-) CD40(-) DCs.
Resumo:
The outcome of dendritic cell (DC) presentation of Ag to T cells via the TCR/MHC synapse is determined by second signaling through CD80/86 and, importantly, by ligation of costimulatory ligands and receptors located at the DC and T cell surfaces. Downstream signaling triggered by costimulatory molecule ligation results in reciprocal DC and T cell activation and survival, which predisposes to enhanced T cell-mediated immune responses. In this study, we used adenoviral vectors to express a model tumor Ag (the E7 oncoprotein of human papillomavirus 16) with or without coexpression of receptor activator of NF-kappaB (RANK)/RANK ligand (RANKL) or CD40/CD40L costimulatory molecules, and used these transgenic DCs to immunize mice for the generation of E7-directed CD8(+) T cell responses. We show that coexpression of RANK/RANKL, but not CD40/CD40L, in E7-expressing DCs augmented E7-specific IFN-gamma-secreting effector and memory T cells and E7-specific CTLs. These responses were also augmented by coexpression of T cell costimulatory molecules (RANKL and CD40L) or DC costimulatory molecules (RANK and CD40) in the E7-expressing DC immunogens. Augmentation of CTL responses correlated with up-regulation of CD80 and CD86 expression in DCs transduced with costimulatory molecules, suggesting a mechanism for enhanced T cell activation/survival. These results have generic implications for improved tumor Ag-expressing DC vaccines, and specific implications for a DC-based vaccine approach for human papillomavirus 16-associated cervical carcinoma.
Resumo:
Vaccines have been described as weapons of mass protection. The eradication of many diseases is testament to their utility and effectiveness. Nevertheless, many vaccine preventable diseases remain prevalent because of political and economic barriers. Additionally, the effects of immaturity and old age, therapies that incapacitate the adaptive immune system and the multitude of strategies evolved by pathogens to evade immediate or sustained recognition by the mammalian immune system are barriers to the effectiveness of existing vaccines or development of new vaccines. In the front line of defence against the pervasiness of infection are the elements of the innate immune system. Innate immunity is under studied and poorly appreciated. However, in the first days after entry of a pathogen into the body, our entire protective response is dependant upon the various elements of our innate immune repertoire. In spite of, its place as our initial defence against infection, attention is only now turning to strategies which enhance or supplement innate immunity. This review examines the need for and potential of innate immune therapies.
Resumo:
Although immune responses leading to rejection of transplantable tumours have been well studied, requirements for epithelial tumour rejection are unclear. Here, we use human growth hormone (hGH) expressed in epithelial cells (skin keratinocytes) as a model neo-self antigen to investigate the consequences of antigen presentation from epithelial cells. Mice transgenic for hGH driven from the keratin 14 promoter express hGH in skin keratinocytes. This hGH-transgenic skin is not rejected by syngeneic non-transgenic recipients, although an antibody response to hGH develops in grafted animals. Systemic immunization of graft recipients with hGH peptides, or local administration of stimulatory anti-CD40 antibody, induces temporary macroscopic graft inflammation, and an obvious dermal infiltrate of inflammatory cells, but not graft rejection. These results suggest that a neo-self antigen expressed in somatic cells in skin can induce an immune response that can be enhanced further by induction of specific immunity systemically or non-specific immunity locally. However, immune responses do not always lead to rejection, despite induction of local inflammatory changes. Therefore, in vitro immune responses and in vivo delayed type hypersensitivity are not surrogate markers for immune responses effective against epithelial cells expressing neoantigens.
Resumo:
A problem facing the use of subunit peptide and protein vaccines is their inability to stimulate protective immune responses. Many different approaches have been utilized to overcome this inefficient immune activation. The approach we have taken is to modify the vaccine antigen so that it now has adjuvant properties. To do this, multiple copies of minimal CD8 T cell epitopes were attached to a poly lysine lipid core. These constructs are known as lipid-core-peptides (LCP). The research presented here examines the adjuvant activity of LCP. Using mouse models, we were able to show that LCP were indeed able to activate antigen-presenting cells in vitro and to activate cytotoxic T-cell responses in vivo. More importantly, LCP were able to stimulate the development of a protective antitumour immune response.
Resumo:
Immunizing pregnant women with a malaria vaccine is one approach to protecting the mother and her offspring from malaria infection. However, specific maternal Abs generated in response to vaccination and transferred to the fetus may interfere with the infant's ability to respond to the same vaccine. Using a murine model of malaria, we examined the effect of maternal 19-kDa C-terminal region of merozoite surface protein-1 (MSP1(19)) and Plasmodium yoelii Abs on the pups' ability to respond to immunization with MSP1(19). Maternal MSPI,g-specific Abs but not A yoelii-specific Abs inhibited Ab production following MSP1(19) immunization in 2-wk-old pups. This inhibition was correlated with the amount of maternal MSP1(19) Ab present in the pup at the time of immunization and was due to fewer specific B cells. Passively acquired Ab most likely inhibited the development of an Ab response by blocking access to critical B cell epitopes. If a neonate's ability to respond to MSP1(19) vaccination depends on the level of maternal Abs present at the time of vaccination, it may be necessary to delay immunization until Abs specific for the vaccinating Ag have decreased.
Resumo:
Dendritic cells (DCs) regulate various aspects of innate immunity, including natural killer (NK) cell function. Here we define the mechanisms involved in DC - NK cell interactions during viral infection. NK cells were efficiently activated by murine cytomegalovirus ( MCMV) - infected CD11b(+) DCs. NK cell cytotoxicity required interferon-alpha and interactions between the NKG2D activating receptor and NKG2D ligand, whereas the production of interferon-gamma by NK cells relied mainly on DC-derived interleukin 18. Although Toll-like receptor 9 contributes to antiviral immunity, we found that signaling pathways independent of Toll-like receptor 9 were important in generating immune responses to MCMV, including the production of interferon-alpha and the induction of NK cell cytotoxicity. Notably, adoptive transfer of MCMV-activated CD11b(+) DCs resulted in improved control of MCMV infection, indicating that these cells participate in controlling viral replication in vivo.