33 resultados para Information in biology
Resumo:
Background: Determination of the subcellular location of a protein is essential to understanding its biochemical function. This information can provide insight into the function of hypothetical or novel proteins. These data are difficult to obtain experimentally but have become especially important since many whole genome sequencing projects have been finished and many resulting protein sequences are still lacking detailed functional information. In order to address this paucity of data, many computational prediction methods have been developed. However, these methods have varying levels of accuracy and perform differently based on the sequences that are presented to the underlying algorithm. It is therefore useful to compare these methods and monitor their performance. Results: In order to perform a comprehensive survey of prediction methods, we selected only methods that accepted large batches of protein sequences, were publicly available, and were able to predict localization to at least nine of the major subcellular locations (nucleus, cytosol, mitochondrion, extracellular region, plasma membrane, Golgi apparatus, endoplasmic reticulum (ER), peroxisome, and lysosome). The selected methods were CELLO, MultiLoc, Proteome Analyst, pTarget and WoLF PSORT. These methods were evaluated using 3763 mouse proteins from SwissProt that represent the source of the training sets used in development of the individual methods. In addition, an independent evaluation set of 2145 mouse proteins from LOCATE with a bias towards the subcellular localization underrepresented in SwissProt was used. The sensitivity and specificity were calculated for each method and compared to a theoretical value based on what might be observed by random chance. Conclusion: No individual method had a sufficient level of sensitivity across both evaluation sets that would enable reliable application to hypothetical proteins. All methods showed lower performance on the LOCATE dataset and variable performance on individual subcellular localizations was observed. Proteins localized to the secretory pathway were the most difficult to predict, while nuclear and extracellular proteins were predicted with the highest sensitivity.
Resumo:
The main aim of the proposed approach presented in this paper is to improve Web information retrieval effectiveness by overcoming the problems associated with a typical keyword matching retrieval system, through the use of concepts and an intelligent fusion of confidence values. By exploiting the conceptual hierarchy of the WordNet (G. Miller, 1995) knowledge base, we show how to effectively encode the conceptual information in a document using the semantic information implied by the words that appear within it. Rather than treating a word as a string made up of a sequence of characters, we consider a word to represent a concept.
Resumo:
A major requirement for pervasive systems is to integrate context-awareness to support heterogeneous networks and device technologies and at the same time support application adaptations to suit user activities. However, current infrastructures for pervasive systems are based on centralized architectures which are focused on context support for service adaptations in response to changes in the computing environment or user mobility. In this paper, we propose a hierarchical architecture based on active nodes, which maximizes the computational capabilities of various nodes within the pervasive computing environment, while efficiently gathering and evaluating context information from the user's working environment. The migratable active node architecture employs various decision making processes for evaluating a rich set of context information in order to dynamically allocate active nodes in the working environment, perform application adaptations and predict user mobility. The active node also utilizes the Redundant Positioning System to accurately manage user's mobility. This paper demonstrates the active node capabilities through context-aware vertical handover applications.