139 resultados para Influenza A virus
Resumo:
An improved method for counting virus and virus like particles by electron microscopy (EM) was developed. The procedure involves the determination of the absolute concentration of pure or semi-pure particles once deposited evenly on EM grids using either centrifugation or antibody capture techniques. The counting of particles was done with a Microfiche unit which enlarged approximately 50 x the image of particles on a developed negative film which had been taken at a relatively low magnification (2500 x) by EM. Initially, latex particles of a known concentration were counted using this approach, to prove the accuracy of the technique. The latex particles were deposited evenly on an EM grid using centrifugation (Modified Beckmen EM-90 Airfuge technique). Subsequently, recombinant Bluetongue virus (BTV) core-like particles (CLPs) captured by a Monoclonal antibody using a hovel sample loading method were counted by the Microfiche unit method and by a direct EM method. Comparison of the simplified counting method developed with a conventional method, showed good agreement. The method is simple, accurate, rapid, and reproducible when used with either pure particles or with particles from crude cell culture extracts.
Resumo:
The field of protein crystallography inspires and enthrals, whether it be for the beauty and symmetry of a perfectly formed protein crystal, the unlocked secrets of a novel protein fold, or the precise atomic-level detail yielded from a protein-ligand complex. Since 1958, when the first protein structure was solved, there have been tremendous advances in all aspects of protein crystallography, from protein preparation and crystallisation through to diffraction data measurement and structure refinement. These advances have significantly reduced the time required to solve protein crystal structures, while at the same time substantially improving the quality and resolution of the resulting structures. Moreover, the technological developments have induced researchers to tackle ever more complex systems, including ribosomes and intact membrane-bound proteins, with a reasonable expectation of success. In this review, the steps involved in determining a protein crystal structure are described and the impact of recent methodological advances identified. Protein crystal structures have proved to be extraordinarily useful in medicinal chemistry research, particularly with respect to inhibitor design. The precise interaction between a drug and its receptor can be visualised at the molecular level using protein crystal structures, and this information then used to improve the complementarity and thus increase the potency and selectivity of an inhibitor. The use of protein crystal structures in receptor-based drug design is highlighted by (i) HIV protease, (ii) influenza virus neuraminidase and (iii) prostaglandin H-2-synthetase. These represent, respectively, examples of protein crystal structures that (i) influenced the design of drugs currently approved for use in the treatment of HIV infection, (ii) led to the design of compounds currently in clinical trials for the treatment of influenza infection and (iii) could enable the design of highly specific non-steroidal anti-inflammatory drugs that lack the common side-effects of this drug class.
Resumo:
Systemic Cowdry Type A inclusions (CAs) were observed in a moribund Cherax destructor collected at an aquaculture farm in South Australia. Inclusions were most common in the gills and were associated with multifocal necrosis of the main gill axis and lamellae. The hepatopancreas was necrotic; however, only one CA was observed in the interstitial tissues. CAs were associated with necrosis in the abdominal and gut musculature. CAs were also observed in the spongy connective tissues and the epicardium. Empty capsids (17.5 +/- 0.5 nm) and microfilaments were most commonly observed within these inclusions by transmission electron microscopy. Complete icosahedral viral particles (20.8 +/- 1.2 nm) were difficult to distinguish within the viroplasm, but were visualised better in aggregates between the viroplasm and the inner nuclear membrane. The nucleolus was closely associated with the developing viroplasm, and was hypertrophied and segregated into its fibrillar and granular components. The virus was named Cherax destructor systemic parvo-like virus (CdSPV) on the basis of its histopathology, cytopathology and morphology. CdSPV is the first systemic virus described in a freshwater crayfish.