34 resultados para Infection disease
Resumo:
'Specking' on harvested freesia (Freesia hybrida) flowers is a problem worldwide. The disease is caused by the fungal pathogen Botrytis cinerea. This disease symptom detracts from appearance and reduces marketability of the flowers. Unlike other important cut flower crops (e.g. gerbera), the mode of infection and epidemiology of postharvest freesia flower specking caused by B. cinerea has not been reported. Epidemiological studies were carried out under simulated conditions typical of those occurring during postharvest handling of freesia flowers. Infection of freesia flowers by B. cinerea occurred when a conidium germinated, formed a germ tube(s) and penetrated epidermal cells. Fungal hyphae then colonised adjacent cells, resulting in visible lesions. Different host reactions were observed on freesia 'Cote d'Azur' petals at 20 degrees C compared to 5 degrees C. The infection process was relatively rapid at 20 degrees C, with visible lesions produced within 7 h of incubation. However, lesion expansion ceased after 24 h of incubation. Infection was slower at 5 degrees C, with visible lesions produced after 48 h of incubation. However, lesion development at 5 degrees C was continuous, with lesions expanding over 4 days. Light microscopy observations revealed increased host defence reactions during infection. These reactions involved production of phenolic compounds, probably lignin and/or callose, around infection sites. Such substances may play a role in restricting petal colonisation and lesion expansion. Disease severity and lesion numbers on freesia flowers incubated at 12 degrees C were higher, but not significantly higher (P > 0.05), than on those incubated at 20 degrees C. Disease severity and progression were differentially mediated by temperature and relative humidity (R. H.). Infection of freesia flowers was severe at 100% R. H. for all three incubation temperatures of 5, 12 and 20 degrees C. In contrast, no lesions were produced at 80 to 90% R. H. at either 5 or 20 degrees C.
Resumo:
The potential role of viruses in coral disease has only recently begun to receive attention. Here we describe our attempts to determine whether viruses are present in thermally stressed corals Pavona danai, Acropora formosa and Stylophora pistillata and zoanthids Zoanthus sp., and their zooxanthellae. Heat-shocked P. danai, A. formosa and Zoanthus sp. all produced numerous virus-like particles (VLPs) that were evident in the animal tissue, zooxanthellae and the surrounding seawater; VLPs were also seen around heat-shocked freshly isolated zooxanthellae (FIZ) from P. danai and S. pistillata. The most commonly seen VLPs were tail-less, hexagonal and about 40 to 50 nm in diameter, though a diverse range of other VLP morphotypes (e.g. rounded, rod-shaped, droplet-shaped, filamentous) were also present around corals. When VLPs around heat-shocked FIZ from S. pistillata were added to non-stressed FIZ from this coral, they resulted in cell lysis, suggesting that an infectious agent was present; however, analysis with transmission electron microscopy provided no clear evidence of viral infection. The release of diverse VLPs was again apparent when flow cytometry was used to enumerate release by heat-stressed A. formosa nubbins. Our data support the infection of reef corals by viruses, though we cannot yet determine the precise origin (i.e. coral, zooxanthellae and/or surface microbes) of the VLPs seen. Furthermore, genome sequence data are required to establish the presence of viruses unequivocally.
Resumo:
Quality of life has been shown to be poor among people living with chronic hepatitis C However, it is not clear how this relates to the presence of symptoms and their severity. The aim of this study was to describe the typology of a broad array of symptoms that were attributed to hepatitis C virus (HCV) infection. Phase I used qualitative methods to identify symptoms. In Phase 2, 188 treatment-naive people living with HCV participated in a quantitative survey. The most prevalent symptom was physical tiredness (86%) followed by irritability (75%), depression (70%), mental tiredness (70%), and abdominal pain (68%). Temporal clustering of symptoms was reported in 62% of participants. Principal components analysis identified four symptom clusters: neuropsychiatric (mental tiredness, poor concentration, forgetfulness, depression, irritability, physical tiredness, and sleep problems); gastrointestinal (day sweats, nausea, food intolerance, night sweats, abdominal pain, poor appetite, and diarrhea); algesic (joint pain, muscle pain, and general body pain); and dysesthetic (noise sensitivity, light sensitivity, skin. problems, and headaches). These data demonstrate that symptoms are prevalent in treatment-naive people with HCV and support the hypothesis that symptom clustering occurs.
Resumo:
Human metapneumovirus (HMPV) is a recently discovered pathogen first identified in respiratory specimens from young children suffering from clinical respiratory syndromes ranging from mild to severe lower respiratory tract illness. HMPV has worldwide prevalence, and is a leading cause of respiratory tract infection in the first years of life, with a spectrum of disease similar to respiratory syncytial virus (RSV). The disease burden associated with HMPV infection has not been fully elucidated; however, studies indicate that HMPV may cause upper or lower respiratory tract illness in patients between ages 2 months and 87 years, may co-circulate with RSV, and HMPV infection may be associated with asthma exacerbation. The mechanisms and effector pathways contributing to immunity or disease pathogenesis following infection are not fully understood; however, given the clinical significance of HMPV, there is a need for a fundamental understanding of the immune and pathophysiological processes that occur following infection to provide the foundation necessary for the development of effective vaccine or therapeutic intervention strategies. This review provides a current perspective on the processes associated with HMPV infection, immunity, and disease pathogenesis. (c) 2005 Elsevier SAS. All rights reserved.