98 resultados para IRON(III)
Resumo:
The beta subunit of the Escherichia coli replicative DNA polymerase III holoenzyme is the sliding clamp that interacts with the alpha (polymerase) subunit to maintain the high processivity of the enzyme. The beta protein is a ring-shaped dimer of 40.6 kDa subunits whose structure has previously been determined at a resolution of 2.5 Angstrom [Kong et al. (1992), Cell, 69, 425-437]. Here, the construction of a new plasmid that directs overproduction of beta to very high levels and a simple procedure for large-scale purification of the protein are described. Crystals grown under slightly modified conditions diffracted to beyond 1.9 Angstrom at 100 K at a synchrotron source. The structure of the beta dimer solved at 1.85 Angstrom resolution shows some differences from that reported previously. In particular, it was possible at this resolution to identify residues that differed in position between the two subunits in the unit cell; side chains of these and some other residues were found to occupy alternate conformations. This suggests that these residues are likely to be relatively mobile in solution. Some implications of this flexibility for the function of beta are discussed.
Resumo:
For many years proof that the hypoxic nature of malignant tumours can be used to selectively target anticancer drugs has been sought. Several classes of potential redox activated anticancer drugs have been developed to take advantage of the reducing environment resulting from the hypoxia. Drug complexes with redox active metal centres as carriers have been investigated, but have largely been employed with cytotoxic drugs that require release of the drug intracellularly, complicating the design of such complexes. MMP inhibitors, a new class of anticancer drug, conversely act in the extracellular environment and we have investigated inhibitor complexes with several redox active transition metals. Marimastat is an MMP inhibitor with potent in-vitro antimetastatic activity and was recently in Phase III clinical trials for a variety of cancer types. We have synthesised a Co(II1) complex of marimastat incorporating the tetradentate ligand tpa (tris(2-methylpyridyl)amine) as a carrier ligand. The complex was structurally characterised in the solid state by single crystal X-ray diffraction, the first example of a crystal structure containing marimastat. 2D COSY and NOESY NMR spectra showed that the complex exists in two isomeric forms in solution, corresponding to the cis and trans isomers yet only crystallises in one of these forms. Biological testing of the complex in mice with 4T1.2 tumours showed interesting and unexpected outcomes. Initial results of the tumour growth inhibition study showed that a significant inhibition of growth was exhibited by the complex over the free inhibitor and the control. However, the metastatic potential of both free marimastat and the complex were higher than the control indicating likely problems with the experimental protocol. Further experiments are needed to determine the potential of such complexes as hypoxia activated prodrugs but there appears at least to be some promise.
Resumo:
The synthesis of the hexadentate ligand 2,2,9,9-tetra(methyleneamine)-4,7-dithiadecane (EtN(4)S(2)amp) is reported. The ligand is of a type in which bifurcations of the chain occur at atoms other than donor atoms. The cobalt(III) complex [Co(EtN(4)S(2)amp)](3+) (1) was isolated and characterized. The synthetic methodology also results in a number of by-products, notably 2,9,9-tris(methyleneamine)-9-methylenehydroxy-4,7-dithiadecane (Et(HO)N(3)S(2)amp) and an eleven-membered pendant arm macrocyclic ligand 6,10-dimethyl-6,10-bis(methyleneamine)-1,4-dithia-8-azaacycloundec-7- ene (dmatue). The complexes [Co(Et(HO)N(3)S(2)amp)](3+) (2), in which the alcohol is coordinated to the metal ion, and [Co(dmatue)Cl](2+) (4) were isolated and characterized. Et(HO)N(3)S(2)amp also undergoes complexation with cobalt(III) to produce two isomers endo-[Co(Et(HO) N(3)S(2)amp)Cl](2+) (endo-3) and exo-[Co(Et(HO) N(3)S(2)amp)Cl](2+) (exo-3), both with an uncoordinated alcohol group. endo- 3 has the alcohol positioned cis, and exo-3 trans, to the sixth metal coordination site. Reaction of 1 with isobutyraldehyde, paraformaldehyde and base in dimethylformamide results in the encapsulated complex [Co(1,5,5,9,13,13-hexamethyl-18,21-dithia-3,7,11,15-tetraazabicyclo[7.7.6]docosa- 3,14-diene)](ClO4)(3) . 2H(2)O ([Co(Me(6)docosadieneN(4)S(2))](3+) ( 5). All complexes have been characterized by single crystal X-ray study. The low-temperature (11 K) absorption spectrum of 1 has been measured in Nafion films with spin-allowed (1)A(1g) --> T-1(1g) and (1)A(1g) --> T-1(2g) and spin forbidden (1)A(1g) --> T-3(1g) and (1)A(1g) --> T-3(2g) bands observed. The octahedral ligand-field parameters were determined (10Dq = 22570 cm(-1), B = 551 cm(-1); C = 3500 cm(-1)). For 5 10Dq and B were determined (20580 cm(-1); 516 cm(-1), respectively) and compared with those for similar expanded cavity complexes [Co(Me(8)tricosatrieneN(6))](3+) and [Co(Me(5)tricosatrieneN(6))](3+).
Resumo:
The crystal structures of a pair of closely related macrocyclic cyano- and hydroxopentaaminecobalt(III) complexes, as their perchlorate salts, are reported. Although the two complexes, [Co(CN)(C11H27N5)](ClO4)2.H2O and [Co(OH)(C11H27N5)](ClO4)(2), exhibit similar conformations, significant differences in the Co-N bond lengths arise from the influence of the sixth ligand (cyano as opposed to hydroxo). The ensuing hydrogen-bonding patterns are also distinctly different. Disorder in the perchlorate anions was clearly resolved and this was rationalized on the basis of distinct hydrogen-bonding motifs involving the anion O atoms and the N-H and O-H donors.
Resumo:
The pendent-arm macrocyclic hexaamine trans-6,13-dimethyl-1,4,8,11-tetraazacyclotetradecane-6,13-diamine (L) may coordinate in tetra-, penta- or hexadentate modes, depending on the metal ion and the synthetic procedure. We report here the crystal structures of two pseudo-octahedral cobalt(III) complexes of L, namely sodium trans-cyano(trans-6,13-dimethyl-1,4,8,11-tetraazacyclotetradecane-6,13-diamine)cobalt(III) triperchlorate, Na[Co(CN)(C13H30N6)](ClO4)(3) or Na{trans-[CoL(CN)]}(ClO4)(3), (I), where L is coordinated as a pentadentate ligand, and trans-dicyano(trans-6,13-dimethyl-1,4,8,11-tetraazacyclotetradecane-6,13-diamine) cobalt (III) trans-dicyano (trans-6,13-dimethyl-1,4,8,11-tetraazacyclotetradecane-6,13-diaminium)cobalt(III) tetraperchlorate tetrahydrate, [Co(CN)(2)(Cl4H32N6)][Co(CN)(2)(Cl4H30N6)](ClO4)(4)•-4H(2)O or trans-[CoL(CN)(2)]trans-[Co(H2L)(CN)(2)] (ClO4)(4)•-4H(2)O, (II), where the ligand binds in a tetradentate mode, with the remaining coordination sites being filled by C-bound cyano ligands. In (I), the secondary amine Co-N bond lengths lie within the range 1.944 (3)-1.969 (3) &ANGS;, while the trans influence of the cyano ligand lengthens the Co-N bond length of the coordinated primary amine [Co-N = 1.986 (3) &ANGS;]. The Co-CN bond length is 1.899 (3) &ANGS;. The complex cations in (11) are each located on centres of symmetry. The Co-N bond lengths in both cations are somewhat longer than in (I) and span a narrow range [1.972 (3)-1.982 (3) &ANGS;]. The two independent Co-CN bond lengths are similar [1.918 (4) and 1.926 (4) &ANGS;] but significantly longer than in the structure of (1), again a consequence of the trans influence of each cyano ligand.
Expression of the iron regulatory peptide hepcidin is reduced in patients with chronic liver disease
Resumo:
Disturbances in iron metabolism often accompany liver disease in humans and hepatic iron deposition is a frequent finding. Since the peptide hepcidin, a major regulator of body iron homeostasis, is synthesised in the liver, alterations in hepcidin expression could be responsible for these effects. To investigate this possibility, we studied hepcidin expression in liver biopsies from patients with hepatitis C virus (HCV) infection, non-alcoholic fatty liver disease (NAFLD) and hemochromatosis (HC). Total RNA was extracted from the liver tissue of 24 HCV, 17 NASH and 5 HC patients, and 17 liver transplant donors (controls). The levels of mRNA for hepcidin and several other molecules involved in iron metabolism (DMT1, Dcytb, hephaestin, ferroportin, TfR1, TfR2, HFE and HJV) were examined by ribonuclease protection assay and expressed relative to the housekeeping gene GAPDH. The expression of hepcidin was significantly decreased in HCV and NASH patients relative to control liver (109±16 and 200±44 versus 325±26 respectively; P=0.008 and 0.02). We have previously reported similar findings in patients with HC, and this was confirmed in the current analysis (176±21; P=0.003). In both HCV and NAFLD patients the expression of the iron reductase Dcytb and the transferrin binding regulatory molecule TfR2 was also decreased, while the cellular iron exporter ferroportin showed a significant increase. Levels of the mRNA for the iron oxidase hephaestin were lower in HCV patients alone, while expression of the major transferrin binding molecule TfR1 was decreased only in NAFLD patients. Of particular interest was the finding that the expression of HJV (which is mutated in patients with juvenile HC) was significantly increased in NAFLD patients. No changes were seen in the expression of the iron importer DMT1 or the regulatory molecule HFE. Decreased expression of hepcidin in patients with HCV and NAFLD provides an explanation why iron homeostasis could be perturbed in these disorders. Reduced hepcidin levels would increase intestinal iron absorption and iron release from macrophages, which could contribute to hepatic iron accumulation. This in turn could lead to alterations in the expression of various proteins involved in iron transport and its regulation. Indeed most of the changes in the expression of such molecules observed in this study are consistent with this. However, the mechanisms leading to changes in the expression of hepcidin in these diseases remain to be elucidated.
Resumo:
Gold(III)-directed condensation of ethane-1,2-diamine with nitroethane and formaldehyde yielded the gold-coloured macrocyclic complex (cis-6,13-dimethyl-6,13-dinitro-1,4,8,11-tetraazacyclotetradecan-1-ido)gold(III) and the orange acyclic complex (1,9-diamino-5-methyl-5-nitro-3,7-diazanoran-3-ido)gold(III) in good yields. Dissolution in strongly acidic solution gave the colourless fully protonated complexes. The pendant nitro groups are disposed on the same side of the macrocycle in a cis geometry, as confirmed by crystal structure analysis. In both complexes the gold ion lies in a square-planar environment of four nitrogen donors, and the co-ordinate bond to the deprotonated amine is shorter than the remaining Au-N distances.
Resumo:
An experimental white cast iron with the unprecedented fracture tough ness of 40 MPa m(1/2) is currently being studied to determine the mechanisms of toughening. This paper reports the investigation of the role of strain-induced martensitic (SIM) transformation. The dendritic microconstituent in the toughened alloy consists primarily of retained austenite, with precipitated M(7)C(3) carbides and some martensite. Refrigeration experiments and differential scanning calorimetry (DSC) were used to demonstrate, firstly, that this retained austenite has an ''effective'' sub-ambient M(S) temperature and, secondly, that SIM transformation can occur at ambient temperatures. Comparison between room temperature and elevated temperature K-Ic tests showed that the observed SIM produces a transformation toughening response in the alloy, contributing to, but not fully accounting for, its high tough ness. SIM as a mechanism for transformation toughening has not previously been reported for white cast irons. Microhardness traverses on crack paths and X-ray diffraction (XRD) on fracture surfaces confirmed the interpretation of the K-Ic experiments. Further DSC and quantitative XRD showed that, as heat-treatment temperature is varied, there is a correlation between fracture toughness and the volume fraction of unstable retained austenite.
Resumo:
The syntheses and characterisation of the new macrocyclic hexaamine trans-(5(S),7(S),12(R),14(R)-tetramethyl)-1,4,8,11-tetraazacyclotetradecane-6,13-diamine (L-6) and its Co-III complex are reported. The X-ray crystal structural analyses of [CoL6]Cl-2(ClO4) [monoclinic, space group C2/c, a = 16.468(3) Angstrom, b = 9.7156(7) Angstrom, c = 15.070(3) Angstrom, beta = 119.431(8)degrees, Z = 4] and the closely related cis-diamino-substituted macrocyclic complex [CoL2](ClO4)(3) . 2H(2)O (L-2 = cis-6,13-dimethyl-1,4,8,11-tetraazacyclotetradecane-6,13-diamine) [orthorhombic, space group Pna2(1), a = 16.8220(8) Angstrom, b = 10.416(2) Angstrom, c = 14.219(3) Angstrom, Z = 4] reveal significant variations in the observed Co-N bond lengths and coordination geometries, which may be attributed to the trans or cis disposition of the pendent primary amines. The Co-III/II self-exchange electron transfer rate constants for these and other closely related hexaamines have been determined, and variations of some 2 orders of magnitude are found between pairs of trans and cis isomeric Co-III complexes.