86 resultados para Hydraulic diffusivity
Resumo:
We investigated how species identity and variation in salinity and nutrient availability influence the hydraulic conductivity of mangroves. Using a fertilization study of two species in Florida, we found that stem hydraulic conductivity expressed on a leaf area basis (K-leaf) was significantly different among species of differing salinity tolerance, but was not significantly altered by enrichment with limiting nutrients. Reviewing data from two additional sites (Panama and Belize), we found an overall pattern of declining leaf-specific hydraulic conductivity (K-leaf) with increasing salinity. Over three sites, a general pattern emerges, indicating that native stem hydraulic conductivity (K-h) and K-leaf are less sensitive to nitrogen (N) fertilization when N limits growth, but more sensitive to phosphorus (P) fertilization when P limits growth. Processes leading to growth enhancement with N fertilization are probably associated with changes in allocation to leaf area and photosynthetic processes, whereas water uptake and transport processes could be more limiting when P limits growth. These findings suggest that whereas salinity and species identity place broad bounds on hydraulic conductivity, the effects of nutrient availability modulate hydraulic conductivity and growth in complex ways.
Resumo:
Fig. 1. Classical hydraulic jump with partially developed inflow conditions. F1 = 13.6, V1 = 4.7 m/s, B = 0.25 m, h = 0.020 mm, d1 = 0.012 mm, Q = 14 L/s. Photo courtesy of Dr. Hubert Chanson. published in: Geomorphology Volume 82, Issues 1-2, 6 December 2006, Pages 146-159 The Hydrology and Geomorphology of Bedrock Rivers doi:10.1016/j.geomorph.2005.09.024 Submerged and unsubmerged natural hydraulic jumps in a bedrock step-pool mountain channel Brett L. Vallé and Gregory B. Pasternacka
Resumo:
The irrigation of pasture with saline, Na-contaminated industrial wastewater typically results in an increase in soil ESP. From current knowledge (derived largely from cultivated agricultural soils), although these sodic soils are likely to remain stable whilst irrigated with effluent (due to the effluent’s large electrolyte concentration), during rainfall periods of low electrolyte concentration these soils would be expected to disperse. However, effluent irrigated pasture soils have been observed to maintain their structure even during intense rainfall events. Three soil types were collected (Sodosol, Vertosol and Dermosol), each with a cultivated/non-cultivated pair. The soils were equilibrated with various SAR solutions and then leached with deionised water to allow the measurement of saturated hydraulic conductivity (Ksat). At low SARs, Ksat tended to be greater in non-cultivated than cultivated soils and is attributable to a loss of structure associated with cultivation. In addition, as SAR increased, the reduction in relative Ksat tended to be significantly greater in cultivated than non-cultivated soils. The relatively rapid saturated hydraulic conductivity in the non-cultivated soils at large SARs is due to a greater aggregate stability due to greater soil C content. For the sustainable disposal of saline effluent, it is therefore necessary to ensure that soils remain undisturbed and preferably under pasture, thus maximising soil structural stability and hydraulic conductivity.
Resumo:
A stochastic model for solute transport in aquifers is studied based on the concepts of stochastic velocity and stochastic diffusivity. By applying finite difference techniques to the spatial variables of the stochastic governing equation, a system of stiff stochastic ordinary differential equations is obtained. Both the semi-implicit Euler method and the balanced implicit method are used for solving this stochastic system. Based on the Karhunen-Loeve expansion, stochastic processes in time and space are calculated by means of a spatial correlation matrix. Four types of spatial correlation matrices are presented based on the hydraulic properties of physical parameters. Simulations with two types of correlation matrices are presented.