45 resultados para HUMAN BRAIN ACTIVITY


Relevância:

80.00% 80.00%

Publicador:

Resumo:

Much of the hearing loss that occurs in old age is likely to be due to the long-term deterioration of the mitochondria in the different structures of the cochlea. The current review surveys some of the basic information on mitochondria and mitochondrial DNA, as a background to their possible involvement in presbyacusis. It is likely that oxygen radicals damage mitochondrial DNA and other components of the mitochondria, such as their proteins and lipids. This further compromises both oxidative phosphorylation and the repair processes in mitochondria, setting up a vicious cycle of degradation. Evidence is presented from inherited point mutations on the possibly most critical sites for mutations in mitochondrial DNA associated with hearing loss. It is suggested that random sorting and clonal expansion of mutations both maintain the integrity of the pool of mitochondrial DNA molecules and give rise to the apoptosis that leads to loss of vulnerable cells, and hence to deafness. It is moreover suggested that apoptosis of the vulnerable cells of the inner ear may to some extent be preventable, or at least delayed. Copyright (C) 2004 S. Karger AG, Basel.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This article presents the proceedings of a symposium held at the meeting of the International Society for Biomedical Research on Alcoholism (ISBRA) in Mannheim, Germany, in October, 2004. Chronic alcoholism follows a fluctuating course, which provides a naturalistic experiment in vulnerability, resilience, and recovery of human neural systems in response to presence, absence, and history of the neurotoxic effects of alcoholism. Alcohol dependence is a progressive chronic disease that is associated with changes in neuroanatomy, neurophysiology, neural gene expression, psychology, and behavior. Specifically, alcohol dependence is characterized by a neuropsychological profile of mild to moderate impairment in executive functions, visuospatial abilities, and postural stability, together with relative sparing of declarative memory, language skills, and primary motor and perceptual abilities. Recovery from alcoholism is associated with a partial reversal of CNS deficits that occur in alcoholism. The reversal of deficits during recovery from alcoholism indicates that brain structure is capable of repair and restructuring in response to insult in adulthood. Indirect support of this repair model derives from studies of selective neuropsychological processes, structural and functional neuroimaging studies, and preclinical studies on degeneration and regeneration during the development of alcohol dependence and recovery from dependence. Genetics and brain regional specificity contribute to unique changes in neuropsychology and neuroanatomy in alcoholism and recovery. This symposium includes state-of-the-art presentations on changes that occur during active alcoholism as well as those that may occur during recovery-abstinence from alcohol dependence. Included are human neuroimaging and neuropsychological assessments, changes in human brain gene expression, allelic combinations of genes associated with alcohol dependence and preclinical studies investigating mechanisms of alcohol induced neurotoxicity, and neuroprogenetor cell expansion during recovery from alcohol dependence.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Binocular rivalry occurs when different images are presented simultaneously to corresponding points within the left and right eyes. Under these conditions, the observer's perception will alternate between the two perceptual alternatives. Motivated by the reported link between the rate of perceptual alternations, symptoms of psychosis and an incidental observation that the rhythmicity of perceptual alternations during binocular rivalry was greatly increased 10 h after the consumption of LSD, this study aimed to investigate the pharmacology underlying binocular rivalry and to explore the connection between the timing of perceptual switching and psychosis. Psilocybin (4-phosphoryloxy-N,N-dimethyltryptamine, PY) was chosen for the study because, like LSD, it is known to act as an agonist at serotonin (5-HT)(1A) and 5-HT2A receptors and to produce an altered state sometimes marked by psychosis-like symptoms. A total of 12 healthy human volunteers were tested under placebo, low-dose ( 115 mg/kg) and high-dose ( 250 mg/kg) PY conditions. In line with predictions, under both low- and high-dose conditions, the results show that at 90 min postadministration ( the peak of drug action), rate and rhythmicity of perceptual alternations were significantly reduced from placebo levels. Following the 90 min testing period, the perceptual switch rate successively increased, with some individuals showing increases well beyond pretest levels at the final testing, 360 min postadministration. However, as some subjects had still not returned to pretest levels by this time, the mean phase duration at 360 min was not found to differ significantly from placebo. Reflecting the drug-induced changes in rivalry phase durations, subjects showed clear changes in psychological state as indexed by the 5D-ASC ( altered states of consciousness) rating scales. This study suggests the involvement of serotonergic pathways in binocular rivalry and supports the previously proposed role of a brainstem oscillator in perceptual rivalry alternations and symptoms of psychosis.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Neurodegenerative diseases such as Huntington's disease, ischemia, and Alzheimer's disease (AD) are major causes of death. Recently, metabotropic glutamate receptors (mGluRs), a group of seven-transmembrane-domain proteins that couple to G-proteins, have become of interest for studies of pathogenesis. Group I mGluRs control the levels of second messengers such as inositol 1,4,5-triphosphate (IP3) Cal(2+) ions and cAMP. They elicit the release of arachidonic acid via intracellular Ca2+ mobilization from intracellular stores such as mitochondria and endoplasmic reticulum. This facilitates the release of glutamate and could trigger the formation of neurofibrillary tangles, a pathological hallmark of AD. mGluRs regulate neuronal injury and survival, possibly through a series of downstream protein kinase and cysteine protease signaling pathways that affect mitochondrially mediated programmed cell death. They may also play a role in glutamate-induced neuronal death by facilitating Cal(2+) mobilization. Hence, mGluRs have become a target for neuroprotective drug development. They represent a pharmacological path to a relatively subtle amelioration of neurotoxicity because they serve a modulatory rather than a direct role in excitatory glutamatergic transmission.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Alcohol dependence is characterized by tolerance, physical dependence, and craving. The neuroadaptations underlying these effects of chronic alcohol abuse are likely due to altered gene expression. Previous gene expression studies using human post-mortem brain demonstrated that several gene families were altered by alcohol abuse. However, most of these changes in gene expression were small. It is not clear if gene expression profiles have sufficient power to discriminate control from alcoholic individuals and how consistent gene expression changes are when a relatively large sample size is examined. In the present study, microarray analysis (similar to 47 000 elements) was performed on the superior frontal cortex of 27 individual human cases ( 14 well characterized alcoholics and 13 matched controls). A partial least squares statistical procedure was applied to identify genes with altered expression levels in alcoholics. We found that genes involved in myelination, ubiquitination, apoptosis, cell adhesion, neurogenesis, and neural disease showed altered expression levels. Importantly, genes involved in neurodegenerative diseases such as Alzheimer's disease were significantly altered suggesting a link between alcoholism and other neurodegenerative conditions. A total of 27 genes identified in this study were previously shown to be changed by alcohol abuse in previous studies of human post-mortem brain. These results revealed a consistent re-programming of gene expression in alcohol abusers that reliably discriminates alcoholic from non-alcoholic individuals.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Free-standing melanin films were successfully synthesised electrochemically from dopa. The Optimum synthetic conditions such as pH, concentration and current were determined, and it was found that free-standing film,.; could only be formed when ITO glass electrodes were used. The films were analysed by solid state NMR and XPS which showed the presence of indolic moieties characteristic of melanin-type macromolecules. The film showed higher conductivity than chemically synthesised melanin previously reported in literature and also exhibited photoconductivity. (c) 2005 Elsevier Ltd. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This study introduces the use of combined Na-23 magnetic resonance imaging (MRI) and Na-23 NMR relaxometry for the study of meat curing. The diffusion of sodium ions into the meat was measured using Na-23 MRI on a 1 kg meat sample brined in 10% w/w NaCl for 3-100 h. Calculations revealed a diffusion coefficient of 1 x 10(-5) cm(2)/s after 3 h of curing and subsequently decreasing to 8 x 10(-6) cm(2)/s at longer curing times, suggesting that changes occur in the microscopic structure of the meat during curing. The microscopic mobility and distribution of sodium was measured using Na-23 relaxometry. Two sodium populations were observed, and with increasing length of curing time the relaxation times of these changed, reflecting a salt-induced swelling and increase in myofibrillar pore sizes. Accordingly, the present study demonstrated that pore size and thereby salt-induced swelling in meat can be assessed using Na-23 relaxometry.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Background: The mismatch negativity (MMN) is a fronto-centrally distributed event-related potential (ERP) that is elicited by any discriminable auditory change. It is an ideal neurophysiological tool for measuring the auditory processing skills of individuals with aphasia because it can be elicited even in the absence of attention. Previous MMN studies have shown that acoustic processing of tone or pitch deviance is relatively preserved in aphasia, whereas the basic acoustic processing of speech stimuli can be impaired (e.g., auditory discrimination). However, no MMN study has yet investigated the higher levels of auditory processing, such as language-specific phonological and/or lexical processing, in individuals with aphasia. Aims: The aim of the current study was to investigate the MMN response of normal and language-disordered subjects to tone stimuli and speech stimuli that incorporate the basic auditory processing (acoustic, acoustic-phonetic) levels of non-speech and speech sound processing, and also the language-specific phonological and lexical levels of spoken word processing. Furthermore, this study aimed to correlate the aphasic MMN data with language performance on a variety of tasks specifically targeted at the different levels of spoken word processing. Methods M Procedures: Six adults with aphasia (71.7 years +/- 3.0) and six healthy age-, gender-, and education-matched controls (72.2 years +/- 5.4) participated in the study. All subjects were right-handed and native speakers of English. Each subject was presented with complex harmonic tone stimuli, differing in pitch or duration, and consonant-vowel (CV) speech stimuli (non-word /de:/versus real world/deI/). The probability of the deviant for each tone or speech contrast was 10%. The subjects were also presented with the same stimuli in behavioural discrimination tasks, and were administered a language assessment battery to measure their auditory comprehension skills. Outcomes O Results: The aphasic subjects demonstrated attenuated MMN responses to complex tone duration deviance and to speech stimuli (words and non-words), and their responses to the frequency, duration, and real word deviant stimuli were found to strongly correlate with performance on the auditory comprehension section of the Western Aphasia Battery (WAB). Furthermore, deficits in attentional lexical decision skills demonstrated by the aphasic subjects correlated with a word-related enhancement demonstrated during the automatic MMN paradigm, providing evidence to support the word advantage effect, thought to reflect the activation of language-specific memory traces in the brain for words. Conclusions: These results indicate that the MMN may be used as a technique for investigating general and more specific auditory comprehension skills of individuals with aphasia, using speech and/or non-speech stimuli, independent of the individual's attention. The combined use of the objective MMN technique and current clinical language assessments may result in improved rehabilitative management of aphasic individuals.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The human brain assembles an incredible network of over a billion neurons. Understanding how these connections form during development in order for the brain to function properly is a fundamental question in biology. Much of this wiring takes place during embryonic development. Neurons are generated in the ventricular zone, migrate out, and begin to differentiate. However, neurons are often born in locations some distance from the target cells with which they will ultimately form connections. To form connections, neurons project long axons tipped with a specialized sensing device called a growth cone. The growing axons interact directly with molecules within the environment through which they grow. In order to find their targets, axonal growth cones use guidance molecules that can either attract or repel them. Understanding what these guidance cues are, where they are expressed, and how the growth cone is able to transduce their signal in a directionally specific manner is essential to understanding how the functional brain is constructed. In this chapter, we review what is known about the mechanisms involved in axonal guidance. We discuss how the growth cone is able to sense and respond to its environment and how it is guided by pioneering cells and axons. As examples, we discuss current models for the development of the spinal cord, the cerebral cortex, and the visual and olfactory systems. (c) 2005, Elsevier Inc.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The purpose of the present study was to determine antipsychotic doses that achieve 80% striatal doparnine D-2-receptor occupancy for haloperidol, risperidone and olanzapine in rats. Wistar rats were treated with normal saline vehicle (controls), haloperidol (0.25 and 0.5 mg/kg/ day), risperidone (3, 5 and 6 mg/kg/day) and olanzapine (5 and 10 mg/kg/day) for 7 days via osmotic minipumps. Striatal and cerebellar tissue were collected and in vivo dopamine D2-receptor occupancies were determined using H-3-raclopride. The doses required to achieve dopamine D-2-receptor occupancy of 80% in 11- and 24-week old rats were: haloperidol 0.25 mg/kg/day, risperidone 5 mg/kg/day and olanzapine 10 mg/kg/day. (c) 2006 Elsevier B.V All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Recently Hupe and Rubin (2003, Vision Research 43 531 - 548) re-introduced the plaid as a form of perceptual rivalry by using two sets of drifting gratings behind a circular aperture to produce quasi-regular perceptual alternations between a coherent moving plaid of diamond-shaped intersections and the two sets of component 'sliding' gratings. We call this phenomenon plaid motion rivalry (PMR), and have compared its temporal dynamics with those of binocular rivalry in a sample of subjects covering a wide range of perceptual alternation rates. In support of the proposal that all rivalries may be mediated by a common switching mechanism, we found a high correlation between alternation rates induced by PMR and binocular rivalry. In keeping with a link discovered between the phase of rivalry and mood, we also found a link between PMR and an individual's mood state that is consistent with suggestions that each opposing phase of rivalry is associated with one or the other hemisphere, with the 'diamonds' phase of PMR linked with the 'positive' left hemisphere.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

A pathological feature of Alzheimer's disease (AD) is an area-specific neuronal loss that may be caused by excitotoxicity-related synaptic dysfunction. Relative expression levels of synaptopbysin, dynamin I, complexins I and II, N-cadherin, and alpha CaMKII were analysed in human brain tissue from AD cases and controls in hippocampus, and inferior temporal and occipital cortices. Synaptophysin and dynamin I are presynaptic terminal proteins not specific to any neurotransmitter system whereas complexin II, N-cadherin, and alpha CaMKII are specific for excitatory synapses. Complexin I is a presynaptic protein localised to inhibitory synapses. There were no significant differences in synaptophysin, dynamin I, N-cadherin, or alpha CaMKII protein levels between AD cases and controls. The complexin proteins were both markedly lower in AD cases than in controls (P < 0.01). Cases were also categorised by APOE genotype. Averaged across areas there was a 36% lowering of presynaptic proteins in AD cases carrying at least one epsilon 4 allele compared with in AD cases lacking the epsilon 4 allele. We infer that synaptic protein level is not indicative of neuronal loss, but the synaptic dysfunction may result from the marked relative loss of the complexins in AD, and lower levels of presynaptic proteins in AD cases with the APOE epsilon 4 allele. (c) 2006 Elsevier Ltd. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Analysis of the genome of the flavivirus responsible for the 1999 New York City encephalitis epidemic cloned from human brain by reverse-transcription polymerase chain reaction indicates its identity as a lineage I West Nile virus (WNV; WNV-NY1999) closely related to WNVs previously isolated in the Middle East.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Regional atrophy caused by neuronal loss is a characteristic of Alzheimer Disease (AD). Excitatory amino acid transporter-2 (EAAT2) is the major carrier responsible for clearing glutamate from the synaptic cleft in mammalian CNS. A localized attenuation of glutamate transport via reduced expression of functional forms of EAAT2 might contribute to regional excitotoxicity. The EAAT2 gene spans over 100 kb and encodes a 12-kb message. Several groups have identified alternative splice variants of EAAT2 in human brain tissue. These variants can affect transport by altering wild-type EAAT2 protein expression, localization, or transport efficiency. Alternative EAAT2 mRNA transcripts reportedly elicit a dominant-negative effect on glutamate uptake in cell culture. A 50% reduction in the expression in AD cortex of the truncated EAAT2 C-terminal isoform, EAAT2b, has been reported. We obtained cerebral cortex tissue, under informed written consent from the next of kin, from pathologically confirmed control, AD, and non-AD dementia cases. We aimed to determine the distribution and expression patterns of EAAT2 subtypes in susceptible and spared brain regions. We detected five alternate transcripts of EAAT2, two of which had not previously been reported. The relative contributions of novel variants, wild-type EAAT2, and previously discovered splice variants was investigated using Real-time PCR in AD, non-AD dementia, and age-matched control cortex. Our aim is to survey the relationship between these expression patterns and those of markers such as tau, GFAP, and b-amyloid, and to assess the correlation between variant-transporter expression and the level of cell loss.

Relevância:

50.00% 50.00%

Publicador:

Resumo:

Purpose: To evaluate the validity of a uniaxial accelerometer (MTI Actigraph) for measuring physical activity in people with acquired brain injury (ABI) using portable indirect calorimetry (Cosmed K4b(2)) as a criterion measure. Methods: Fourteen people with ABI and related gait pattern impairment (age 32 +/- 8 yr) wore an MTI Actigraph that measured activity (counts(.)min-(1)) and a Cosmed K4b(2) that measured oxygen consumption (mL(.)kg(-1.)min(-1)) during four activities: quiet sitting (QS) and comfortable paced (CP), brisk paced (BP), and fast paced (FP) walking. MET levels were predicted from Actigraph counts using a published equation and compared with Cosmed measures. Predicted METs for each of the 56 activity bouts (14 participants X 4 bouts) were classified (light, moderate, vigorous, or very vigorous intensity) and compared with Cosmed-based classifications. Results: Repeated-measures ANOVA indicated that walking condition intensities were significantly different (P < 0.05) and the Actigraph detected the differences. Overall correlation between measured and predicted METs was positive, moderate, and significant (r = 0.74). Mean predicted METs were not significantly different from measured for CP and BP, but for FP walking, predicted METs were significantly less than measured (P < 0.05). The Actigraph correctly classified intensity for 76.8% of all activity bouts and 91.5% of light- and moderate-intensity bouts. Conclusions: Actigraph counts provide a valid index of activity across the intensities investigated in this study. For light to moderate activity, Actigraph-based estimates of METs are acceptable for group-level analysis and are a valid means of classifying activity intensity. The Actigraph significantly underestimated higher intensity activity, although, in practice, this limitation will have minimal impact on activity measurement of most community-dwelling people with ABI.