31 resultados para HEAD-TO-TAIL CYCLIZATION
Filtro por publicador
- AMS Tesi di Dottorato - Alm@DL - Università di Bologna (5)
- AMS Tesi di Laurea - Alm@DL - Università di Bologna (1)
- Aquatic Commons (10)
- ArchiMeD - Elektronische Publikationen der Universität Mainz - Alemanha (4)
- Archive of European Integration (13)
- Aston University Research Archive (6)
- Biblioteca de Teses e Dissertações da USP (2)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (11)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP) (4)
- Biblioteca Digital de Teses e Dissertações Eletrônicas da UERJ (1)
- Bioline International (1)
- BORIS: Bern Open Repository and Information System - Berna - Suiça (37)
- Brock University, Canada (5)
- Bucknell University Digital Commons - Pensilvania - USA (3)
- CaltechTHESIS (5)
- Cambridge University Engineering Department Publications Database (6)
- CentAUR: Central Archive University of Reading - UK (18)
- Center for Jewish History Digital Collections (2)
- Chinese Academy of Sciences Institutional Repositories Grid Portal (25)
- Comissão Econômica para a América Latina e o Caribe (CEPAL) (1)
- CORA - Cork Open Research Archive - University College Cork - Ireland (2)
- Corvinus Research Archive - The institutional repository for the Corvinus University of Budapest (1)
- CUNY Academic Works (1)
- Dalarna University College Electronic Archive (1)
- Digital Archives@Colby (1)
- Digital Commons - Michigan Tech (2)
- Digital Commons at Florida International University (1)
- Digital Knowledge Repository of Central Drug Research Institute (1)
- Digital Peer Publishing (1)
- DigitalCommons@The Texas Medical Center (5)
- DigitalCommons@University of Nebraska - Lincoln (2)
- Doria (National Library of Finland DSpace Services) - National Library of Finland, Finland (1)
- DRUM (Digital Repository at the University of Maryland) (2)
- Duke University (3)
- eResearch Archive - Queensland Department of Agriculture; Fisheries and Forestry (22)
- Harvard University (5)
- Helda - Digital Repository of University of Helsinki (15)
- Indian Institute of Science - Bangalore - Índia (68)
- Instituto Gulbenkian de Ciência (3)
- Massachusetts Institute of Technology (1)
- Ministerio de Cultura, Spain (3)
- National Center for Biotechnology Information - NCBI (21)
- Publishing Network for Geoscientific & Environmental Data (70)
- QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast (36)
- Queensland University of Technology - ePrints Archive (155)
- Repositorio Academico Digital UANL (1)
- Repositório Alice (Acesso Livre à Informação Científica da Embrapa / Repository Open Access to Scientific Information from Embrapa) (6)
- Repositório digital da Fundação Getúlio Vargas - FGV (1)
- Repositório Digital da UNIVERSIDADE DA MADEIRA - Portugal (1)
- Repositório Institucional da Universidade de Aveiro - Portugal (2)
- Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho" (34)
- SAPIENTIA - Universidade do Algarve - Portugal (1)
- Universidad de Alicante (1)
- Universidad del Rosario, Colombia (5)
- Universidad Politécnica de Madrid (3)
- Universidade Federal do Rio Grande do Norte (UFRN) (1)
- Universidade Técnica de Lisboa (1)
- Universita di Parma (1)
- Universitat de Girona, Spain (2)
- Université de Lausanne, Switzerland (3)
- Université de Montréal (1)
- Université de Montréal, Canada (5)
- University of Canberra Research Repository - Australia (1)
- University of Michigan (262)
- University of Queensland eSpace - Australia (31)
- University of Washington (1)
Resumo:
Most face recognition systems only work well under quite constrained environments. In particular, the illumination conditions, facial expressions and head pose must be tightly controlled for good recognition performance. In 2004, we proposed a new face recognition algorithm, Adaptive Principal Component Analysis (APCA) [4], which performs well against both lighting variation and expression change. But like other eigenface-derived face recognition algorithms, APCA only performs well with frontal face images. The work presented in this paper is an extension of our previous work to also accommodate variations in head pose. Following the approach of Cootes et al, we develop a face model and a rotation model which can be used to interpret facial features and synthesize realistic frontal face images when given a single novel face image. We use a Viola-Jones based face detector to detect the face in real-time and thus solve the initialization problem for our Active Appearance Model search. Experiments show that our approach can achieve good recognition rates on face images across a wide range of head poses. Indeed recognition rates are improved by up to a factor of 5 compared to standard PCA.