38 resultados para Gingival neoplasms
Resumo:
T cells are present in the inflammatory infiltrates of periodontal disease lesions and require antigen presentation by antigen-presenting cells (APCs). While it is still not known whether Th1 or Th2 cells predominate in these lesions, it has been reported that different APCs may induce activation of different T-cell subsets. An immunoperoxidase technique was used to investigate the presence of CD1a+, CMRF-44+, CMRF-58+ and CD83+ dendritic cells, CD14+ macrophages or dendritic cell precursors and CD19+ B cells in gingival biopsies from 21 healthy or gingivitis and 25 periodontitis subjects. The samples were divided into three groups according to the size of infiltrate (group 1, small infiltrates; group 2, medium infiltrates; group 3, extensive infiltrates). The presence of numerous CD1a+ Langerhans cells was noted in the epithelium with no differences between the healthy/gingivitis and periodontitis groups. The percentage of CD83+ dendritic cells in the infiltrates was higher than the percentage of CD1a+, CMRF-44+ or CMRF-58+ dendritic cells. Endothelial cells positive for CD83 were found predominantly in areas adjacent to infiltrating cells, CD83+ dendritic cells being noted in the region of CD83+ endothelium. The percentage of CD14+ cells in the inflammatory infiltrates was similar to that of CD83+ dendritic cells. B cells were the predominant APC in group 2 and 3 tissues. The percentage of B cells in group 3 periodontitis lesions was increased in comparison with group 1 periodontitis tissues and also in comparison with group 3 healthy/gingivitis sections. Functional studies are required to determine the roles of different APC subpopulations in periodontal disease.
Resumo:
We report a case of a patient with the triad of retinoblastoma, dysplastic naevus syndrome (DNS) and multiple cutaneous melanomas. The combination of retinoblastoma and DNS is a significant risk factor for the development of cutaneous melanoma. This risk extends to family members. We recommend that survivors of (inherited) retinoblastoma and their relatives are closely screened for the presence of dysplastic naevi. (C) 2002 Lippincott Williams Wilkins.
Resumo:
Familial adenomatous polyposis (FAP) is an autosomal dominant disorder caused by mutation of the APC gene. It is characterised by the appearance of hundreds to thousands of colorectal adenomas in adolescence and the subsequent development of colorectal cancer. Various extracolonic malignancies are associated with FAP, including desmoids and neoplasms of the stomach, duodenum, pancreas, liver, and brain. We present a family affected by FAP with an exon 14 APC mutation displaying two rare extracolonic lesions, a hepatoblastoma and a myoepithelial carcinoma. The hepatoblastoma was found in a male patient aged 2 years. The second lesion, a myoepithelial carcinoma of the right cheek, was found in a female patient aged 14 years. Inactivation of the normal APC allele was demonstrated in this lesion by loss of heterozygosity analysis, thus implicating APC in the initiation or progression of this neoplasm. This is the first reported case of this lesion in a family affected by FAP.
Resumo:
Background: Growth hormone (GH) is a potent regulator of bone formation. The proposed mechanism of GH action is through the stimulation of osteogenic precursor Cell proliferation and, following clonal expansion of these cells. promotion of differentiation along the osteogenic lineage. Objectives: We tested this hypothesis by studying the effects of GH on primary cell populations of human periodontal ligament cells (PLC) and alveolar bone cells (ABC), which contain a spectrum of osteogenic precursors. Method: The cell populations were assessed for mineralization potential after long-term culture in media containing beta-glycerophosphate and ascorbic acid, by the demonstration of mineral deposition by Von Kossa staining. The proliferative response of the cells to GH was determined over a 48-h period using a crystal violet dye-binding assay. The profile of the cells in terms of osteogcnic marker expression was established using quantitative reverse transcriptase polymerase chain reaction (RT-PCR) for alkaline phosphatase (ALP), osteopontin. osteocalcin, bone sialoprotein (BSP), as well as the bone morphogenetic proteins BMP-2, BMP-4 and BMP-7. Results: As expected, a variety of responses were observed ranging from no mineralization in the PLC populations to dense mineralized deposition observed in one GH-treated ABC population. Over a 48-h period GH was found to be non-mitogenic for all cell populations. Quantitative reverse transcriptase polymerase chain reaction (RT-PCR) BSP mRNA expression correlated well with mineralizing potential of the cells. The change in the mRNA expression of the osteogenic markers was determined following GH treatment of the cells over a 48-h period. GH caused an increase in ALP in most cell populations, and also in BMP expression in some cell populations. However a decrease in BSP. osteocalcin and osteopontin expression in the more highly differentiated cell populations was observed in response to GH. Conclusion: The response of the cells indicates that while long-term treatment with GH may promote mineralization, short-term treatment does not promote proliferation of osteoblast precursors nor induce expression of late osteogenic markers.
Resumo:
Regeneration of osseous defects by a tissue-engineering approach provides a novel means of treatment utilizing cell biology, materials science, and molecular biology. In this study the concept of tissue engineering was tested with collagen type I matrices seeded with cells with osteogenic potential and implanted into sites where osseous damage had occurred. Explant cultures of cells from human alveolar bone and gingiva were established. When seeded into a three-dimensional type I collagen-based scaffold, the bone-derived cells maintained their osteoblastic phenotype as monitored by mRNA and protein levels of the bone-related proteins including bone sialoprotein, osteocalcin, osteopontin, bone morphogenetic proteins 2 and 4, and alkaline phosphatase. These in vitro-developed matrices were implanted into critical-size bone defects in skulls of immunodeficient (SCID) mice. Wound healing was monitored for up to 4 weeks. When measured by microdensitometry the bone density within defects filled with osteoblast-derived matrix was significantly higher compared with defects filled with either collagen scaffold alone or collagen scaffold impregnated with gingival fibroblasts. New bone formation was found at all the sites treated with the osteoblast-derived matrix at 28 days, whereas no obvious new bone formation was identified at the same time point in the control groups. In situ hybridization for the human-specific Alu gene sequence indicated that the newly formed bone tissue resulted from both transplanted human osteoblasts and endogenous mesenchymal stem cells. The results indicate that cells derived from human alveolar bone can be incorporated into bioengineered scaffolds and synthesize a matrix, which on implantation can induce new bone formation.
Resumo:
This review considers the considerable similarities between periodontal disease and rheumatoid arthritis (RA). While the etiology of these two diseases may differ, the underlying pathogenic mechanisms are remarkably similar and it is possible that individuals manifesting both periodontitis and RA may suffer from a unifying underlying systemic dysregulation of the inflammatory response. In light of these findings, the implications for the use of disease-modifying medications in the management of these two chronic inflammatory conditions is apparent. Further longitudinal studies and medication-based intervention studies are required to determine just how closely these two conditions are allied.
Resumo:
Matrix metalloproteinases (MMPs) are a family of enzymes implicated in the degradation and remodeling of extracellular matrix and in vascularization. They are also involved in pathologic processes such as tumor invasion and metastasis in experimental cancer models and in human malignancies. We used gelatin zymography and inummohistochemistry to determine whether MMP-2 and MMP-9 are present in canine tumors and normal tissues and whether MMP production correlates with clinicopathologic parameters of prognostic importance. High levels of pro-MMP-9, pro-MMP-2, and active MMP-2 were detected in most canine tumors. Significantly higher MMP levels were measured in canine tumors than in nontumors, malignancies had higher MMP levels than benign tumors, and sarcomas had higher active MMP-2 than carcinomas. Cartilaginous tumors produced higher MMP levels than did nonsarcomatous malignancies, benign tumors, and normal tissues, and significantly greater MMP-2 than osteosarcomas and fibrosarcomas. Pro-MMP-9 production correlated with the histologic grade of osteosarcomas. The 62-kd form of active MMP-2 was detected only in high-grade, p53-positive, metastatic malignancies. Zymography proved to be a sensitive and quantitative technique for the assessment of MMP presence but has the limitation of requiring fresh tissue; inummohistochemistry is qualitative and comparatively insensitive but could be of value in archival studies. MMP presence was shown in a range of canine tumors, and their link to tumor type and grade was demonstrated for the first time. This study will allow a substantially improved evaluation of veterinary cancer patients and provides baseline information necessary for the design of clinical trials targeting MMPs.
Resumo:
A condition is described where the mandibular canine teeth of Staffordshire Bull Terriers are tipped (curved) caudally and impact at the mesio-palatal gingival margin of the maxillary canine teeth. The aetiology of the condition and possible treatment options are discussed.