163 resultados para Genetic Risk
Resumo:
The phase II glutathione S-transferases (GSTs) GSTT1, GSTM1 and GSTP1 catalyse glutathione-mediated reduction of exogenous and endogenous electrophiles. These GSTs have broad and overlapping substrate specificities and it has been hypothesized that allelic variants associated with less effective detoxification of potential carcinogens may confer an increased susceptibility to cancer. To assess the role of GST gene variants in ovarian cancer development, we screened 285 epithelial ovarian cancer cases and 299 unaffected controls for the GSTT1 deletion (null) variant, the GSTM1 deletion (null) variant and the GSTP1 codon 104 A-->G Ile-->Val amino acid substitution variant, The frequencies of the GSTT1, GSTM1 and GSTP1 polymorphic variants did not vary with tumour behaviour (low malignant potential or invasive) or p53 immunohistochemical status. There was a suggestion that ovarian cancers of the endometrioid or clear cell histological subtype had a higher frequency of the GSTT1 and GSTM1 deletion genotype than other histological subgroups. The GSTT1, GSTM1 and GSTP1 genotype distributions did not differ significantly between unaffected controls and ovarian cancer cases (overall or invasive cancers only). However, the GSTM1 null genotype was associated with increased risk of endometrioid/clear cell invasive cancer [age-adjusted OR (95% CI) = 2.04 (1.01-4.09), P = 0.05], suggesting that deletion of GSTM1 may increase the risk of ovarian cancer of these histological subtypes specifically. This marginally significant finding will require verification by independent studies.
Resumo:
RAD51 colocalizes with both BRCA1 and BRCA2, and genetic variants in RAD51 would be candidate BRCA1/2 modifiers. We searched for RAD51 polymorphisms by sequencing 20 individuals. We compared the polymorphism allele frequencies between female BRCA1/2 mutation carriers with and without breast or ovarian cancer and between population-based ovarian cancer cases with BRCA1/2 mutations to cases and controls without mutations. We discovered two single nucleotide polymorphisms (SNPs) at positions 135 g-->c and 172 g-->t of the 5' untranslated region. In an initial group of BRCA1/2 mutation carriers, 14 (21%) of 67 breast cancer cases carried a c allele at RAD51:135 g-->c, whereas 8 (7%) of 119 women without breast cancer carried this allele. In a second set of 466 mutation carriers from three centers, the association of RAD51:135 g-->c with breast cancer risk was not confirmed. Analyses restricted to the 216 BRCA2 mutation carriers, however, showed a statistically significant association of the 135 c allele with the risk of breast cancer (adjusted odds ratio, 3.2; 95% confidence limit, 1.4-40). BRCA1/2 mutation carriers with ovarian cancer were only about one half as likely to carry the RAD51:135 g-->c SNP. Analysis of the RAD51:135 g-->c SNP in 738 subjects from an Israeli ovarian cancer case-control study was consistent with a lower risk of ovarian cancer among BRCA1/2 mutation carriers with the c allele. We have identified a RAD51 5' untranslated region SNP that may be associated with an increased risk of breast cancer and a lower risk of ovarian cancer among BRCA2 mutation carriers. The biochemical basis of this risk modifier is currently unknown.
Resumo:
MC1R gene variants have previously been associated with red hair and fair skin color, moreover skin ultraviolet sensitivity and a strong association with melanoma has been demonstrated for three variant alleles that are active in influencing pigmentation: Arg151Cys, Arg160Trp, and Asp294His. This study has confirmed these pigmentary associations with MC1R genotype in a collection of 220 individuals drawn from the Nambour community in Queensland, Australia, 111 of whom were at high risk and 109 at low risk of basal cell squamous cell carcinoma. Comparative allele frequencies for nine MC1R variants that have been reported in the Caucasian population were determined for these two groups, and an association between prevalence of basal cell carcinoma, squamous cell carcinoma, solar keratosis and the same three active MC1R variant alleles was demonstrated [odds ratio=3.15 95% CI (1.7, 5.82)]. Three other commonly occurring variant alleles: Val60Leu, Val92Met, and Arg163Gln were identified as having a minimal impact on pigmentation phenotype as well as basal cell carcinoma and squamous cell carcinoma risk. A significant heterozygote effect was demonstrated where individuals carrying a single MC1R variant allele were more likely to have fair and sun sensitive skin as well as carriage of a solar lesion when compared with those individuals with a consensus MC1R genotype. After adjusting for the effects of pigmentation on the association between MC1R variant alleles and basal cell carcinoma and squamous cell carcinoma risk, the association persisted, confirming that presence of at least one variant allele remains informative in terms of predicting risk for developing a solar-induced skin lesion beyond that information gained through observation of pigmentation phenotype.
Resumo:
Genetic research on risk of alcohol, tobacco or drug dependence must make allowance for the partial overlap of risk-factors for initiation of use, and risk-factors for dependence or other outcomes in users. Except in the extreme cases where genetic and environmental risk-factors for initiation and dependence overlap completely or are uncorrelated, there is no consensus about how best to estimate the magnitude of genetic or environmental correlations between Initiation and Dependence in twin and family data. We explore by computer simulation the biases to estimates of genetic and environmental parameters caused by model misspecification when Initiation can only be defined as a binary variable. For plausible simulated parameter values, the two-stage genetic models that we consider yield estimates of genetic and environmental variances for Dependence that, although biased, are not very discrepant from the true values. However, estimates of genetic (or environmental) correlations between Initiation and Dependence may be seriously biased, and may differ markedly under different two-stage models. Such estimates may have little credibility unless external data favor selection of one particular model. These problems can be avoided if Initiation can be assessed as a multiple-category variable (e.g. never versus early-onset versus later onset user), with at least two categories measurable in users at risk for dependence. Under these conditions, under certain distributional assumptions., recovery of simulated genetic and environmental correlations becomes possible, Illustrative application of the model to Australian twin data on smoking confirmed substantial heritability of smoking persistence (42%) with minimal overlap with genetic influences on initiation.
Resumo:
There have been few replicated examples of genotype x environment interaction effects on behavioral variation or risk of psychiatric disorder. We review some of the factors that have made detection of genotype x environment interaction effects difficult, and show how genotype x shared environment interaction (GxSE) effects are commonly confounded with genetic parameters in data from twin pairs reared together. Historic data on twin pairs reared apart can in principle be used to estimate such GxSE effects, but have rarely been used for this purpose. We illustrate this using previously published data from the Swedish Adoption Twin Study of Aging (SATSA), which suggest that GxSE effects could account for as much as 25% of the total variance in risk of becoming a regular smoker. Since few separated twin pairs will be available for study in the future, we also consider methods for modifying variance components linkage analysis to allow for environmental interactions with linked loci.
Resumo:
Sun exposure is the main environmental risk factor for melanoma, but the timing of exposure during life that confers increased risk is controversial. Here we provide the first report of the association between lifetime and age-specific cumulative ultraviolet exposure and cutaneous melanoma in Queensland, Australia, an area of high solar radiation, and examine the association separately for families at high, intermediate and low familial melanoma risk. Subjects were a population-based sample of melanoma cases diagnosed and registered in Queensland between 1982 and 1990 and their relatives. The analysis included 1,263 cases and relatives with confirmed cutaneous melanoma and 3,111 first-degree relatives without melanoma as controls. Data an lifetime residence and sun exposure, family history and other melanoma risk factors were collected by a mailed questionnaire. Using conditional multiple logistic regression with stratification by family, cumulative sun exposure in childhood and in adulthood after age 20 was significantly associated with melanoma, with estimated relative risks of 1.15 per 5,000 minimal erythemal doses (MEDs) from age 5 to 12 years, and 1.52 per 5 MEDs/day from age 20. There was no association with sun exposure in families at high familial melanoma risk. History of nonmelanoma skin cancer (relative risk [RR] = 1.26) and multiple sunburns (RR = 1.31) were significant risk factors. These findings indicate that sun exposure in childhood and in adulthood are important determinants of melanoma but not in those rare families with high melanoma susceptibility, in which genetic factors are likely to be more important. (C) 2002 Wiley-Liss, Inc.
Resumo:
The incidence of melanoma increases markedly in the second decade of life but almost nothing is known of the causes of melanoma in this age group. We report on the first population-based case-control study of risk factors for melanoma in adolescents (15-19 years). Data were collected through personal interviews with cases, controls and parents. A single examiner conducted full-body nevus counts and blood samples were collected from cases for analysis of the CDKN2A melanoma predisposition gene. A total of 201 (80%) of the 250 adolescents with melanoma diagnosed between 1987 and 1994 and registered with the Queensland Cancer Registry and 205 (79%) of 258 age-, gender- and location-matched controls who were contacted agreed to participate. The strongest risk factor associated with melanoma in adolescents in a multivariate model was the presence of more than 100 nevi 2 mm or more in diameter (odds ratio [OR] = 46.5, 95% confidence interval [Cl] = 11.4-190.8). Other risk factors were red hair (OR = 5.4, 95%Cl = 1.0-28.4); blue eyes (OR = 4.5, 95%Cl = 1.5- 13.6); inability to tan after prolonged sun exposure (OR = 4.7, 95%Cl = 0.9-24.6); heavy facial freckling (OR = 3.2, 95% Cl = 0.9-12.3); and family history of melanoma (OR = 4.0, 95%Cl = 0.8-18.9). Only 2 of 147 cases tested had germline variants or mutations in CDKN2A. There was no association with sunscreen use overall, however, never/rare use of sunscreen at home under the age of 5 years was associated with increased risk (OR = 2.2, 95%Cl = 0.7-7.1). There was no difference between cases and controls in cumulative sun exposure in this high-exposure environment. Factors indicating genetic susceptibility to melanoma, in particular, the propensity to develop nevi and freckles, red hair, blue eyes, inability to tan and a family history of the disease are the primary determinants of melanoma among adolescents in this high solar radiation environment. Lack of association with reported sun exposure is consistent with the high genetic susceptibility in this group. (C) 2002 Wiley-Liss, Inc.
Resumo:
We have examined melanocortin-1 receptor (MC1R) variant allele frequencies in the general population and in a collection of adolescent dizygotic and monozygotic twins to determine statistical associations of pigmentation phenotypes with increased skin cancer risk. This included hair and skin color, freckling, mole count and sun exposed skin reflectance. Nine variants were studied and designated as either strong R (OR = 63; 95% CI 32-140) or weak r (OR = 5; 95% CI 3-11) red hair alleles. Penetrance of each MC1R variant allele was consistent with an allelic model where effects were multiplicative for red hair but additive for skin reflectance. To assess the interaction of the brown eye color gene BEY2/OCA2 on the phenotypic effects of variant MC1R alleles we imputed OCA2 genotype in the twin collection. A modifying effect of OCA2 on MC1R variant alleles was seen on constitutive skin color, freckling and mole count. In order to study the individual effects of these variants on pigmentation phenotype we have established a series of human primary melanocyte strains genotyped for the MC1R receptor. These include strains which are MC1R wild-type consensus, variant heterozygotes, and homozygotes for strong R alleles Arg151Cys and Arg160Trp. Ultrastructural analysis demonstrated that only consensus strains contained stage III and IV melanosomes in their terminal dendrites whereas Arg151Cys and Arg160Trp homozygous strains contained only immature stage I and II melanosomes. Such genetic association studies combined with the functional analysis of MC1R variant alleles in melanocytic cells should provide a link in understanding the association between pigmentary phototypes and skin cancer risk.
Resumo:
A common single nucleotide polymorphism (SNP) in the 5' untranslated region (5'UTR) of the epidermal growth factor (EGF) gene modulates the level of transcription of this gene and hence is associated with serum levels of EGF. This variant may be associated with melanoma risk, but conflicting findings have been reported. An Australian melanoma case-control sample was typed for the EGF+61A>G transversion (rs4444903). The sample comprised 753 melanoma cases from 738 families stratified by family history of melanoma and 2387 controls from 645 unselected twin families. Ancestry of the cases and controls was recorded, and the twins had undergone skin examination to assess total body nevus count, degree of freckling and pigmentation phenotype. SNP genotyping was carried out via primer extension followed by matrix-assisted laser desorption time of flight (MALDI-TOF) mass spectroscopy. The EGIF+61 SNP was not found to be significantly associated with melanoma status or with development of nevi or freckles. Among melanoma cases, however, G homozygotes had thicker tumors (p=0.05), in keeping with two previous studies. The EGF polymorphism does not appear to predispose to melanoma or nevus development, but its significant association with tumor thickness implies that it may be a useful marker of prognosis.
Resumo:
A range of environmental risk factors, with childbirth the most notable, have been associated with the development of pelvic organ prolapse and urinary incontinence. However, indications of genetic influence (positive family histories, ethnic differences) have prompted research into the heritability of measures of pelvic organ descent and joint mobility, which have also been associated with prolapse and incontinence. Genes appear to influence about half of the variation in these measures and, furthermore, the pelvic organ measures are associated with elbow hyperextension at a phenotypic level (r approximate to .2). We examined these measures in young, nulligravid women to determine if their association is due to a common genetic source. Data were collected from 178 Caucasian female co-twins and non-twin sisters, 50 of whom returned to be retested, which allowed reliability to be estimated and unreliable variance to be isolated in the multivariate analyses. Structural equation modeling was used to estimate genetic associations between latent elbow and bladder mobility factors for which heritabilities were estimated to be 0.80 and 0.64 respectively. The association between these factors appeared to be mediated by common genes (genetic r = .48, non-shared environmental r = -.06), with genes influencing latent elbow mobility accounting for 14% of the variation in latent bladder mobility. We speculate that genes influencing connective tissue structure may underlie this association.
Resumo:
Because the determinants of anxiety and depression in late adolescence and early adulthood may differ from those in later life, we investigated the temporal stability and magnitude of genetic and environmental correlates of symptoms of anxiety and depression across the life span. Data were collected from a population-based Australian sample of 4364 complete twin pairs and 777 singletons aged 20 to 96 years who were followed-up over three studies between 1980 and 1996. Each study contained the 14-item self-report DSSI/sAD scale which was used to measure recently experienced symptoms of anxiety and depression. Symptom scores were then divided and assigned to age intervals according to each subject's age at time of participation. We fitted genetic simplex models to take into account the longitudinal nature of the data. For male anxiety and depression, the best fitting simplex models comprised a single genetic innovation at age 20 which was transmitted, and explained genetic variation in anxiety and depression at ages 30, 40, 50 and 60. Most of the lifetime genetic variation in female anxiety and depression could also be explained by innovations at age 20 which were transmitted to all other ages; however, there were also smaller age-dependent genetic innovations at 30 for anxiety and at 40 and 70 for depression. Although the genetic determinants of anxiety and depression appear relatively stable across the life-span for males and females, there is some evidence to support additional mid-life and late age gene action in females for depression. The fact that mid-life onset for anxiety occurs one decade before depression is also consistent with a causal relationship (anxiety leading to depression) between these conditions. These findings have significance for large scale depression prevention projects.
Resumo:
Current opinion contends that complex interactions between genetic and environmental factors play a role in the etiology of Parkinson's disease (PD). Cigarette smoking is thought to reduce risk of PD, and emerging evidence suggests that genetic factors may modulate smoking's effect. We used a case-only design, an approach not previously used to study gene-environment interactions in PD, specifically to study interactions between glutathione-S-transferase (GST) gene polymorphisms and smoking in relation to PD. Four-hundred PD cases (age at onset: 60.0 +/- 10.7 years) were genotyped for common polymorphisms in GSTM1, PI, T1 and Z1 using well-established methods. Smoking exposure data were collected in face-to-face interviews. The independence of the studied GST genotypes and smoking exposure was confirmed by studying 402 healthy, aged individuals. No differences were observed in the distributions of GSTM1, T1 or Z1 polymorphisms between ever-smoked and never-smoked PD cases using logistic regression (all P > 0.43). However, GSTP1 *C haplotypes were over-represented among PD cases who ever smoked (odds ratio for interaction (ORi) = 2.00 (95% Cl: 1.11-3.60, P = 0.03)). Analysis revealed that ORi between smoking and the GSTP1-114Val carrier status increased with increasing smoking dose (P = 0.02 for trend). These data suggest that one or more GSTP1 polymorphisms may interact with cigarette smoking to influence the risk for PD. (C) 2004 Elsevier Ireland Ltd. All rights reserved.
Resumo:
Genetic discrimination, defined as the differential treatment of individuals or their relatives on the basis of actual or presumed genetic differences, is an emerging issue of interest in academic, clinical, social and legal contexts. While its potential significance has been discussed widely, verified empirical data are scarce. Genetic discrimination is a complex phenomenon to describe and investigate, as evidenced by the recent Australian Law Reform Commission inquiry in Australia. The authors research project, which commenced in 2002, aims to document the multiple perspectives and experiences regarding genetic discrimination in Australia and inform future policy development and law reform. Data are being collected from consumers, employers, insurers and the legal system. Attempted verification of alleged accounts of genetic discrimination will be a novel feature of the research. This paper overviews the early stages of the research, including conceptual challenges and their methodological implications.
Resumo:
It remains unclear whether genetic variants in SNCA (the alpha-synuclein gene) alter risk for sporadic Parkinson's disease (PD). The polymorphic mixed sequence repeat (NACP-Rep I) in the promoter region of SNCA has been previously examined as a potential susceptibility factor for PD with conflicting results. We report genotype and allele distributions at this locus from 369 PD cases and 370 control subjects of European Australian ancestry, with alleles designated as -1, 0, +1, +2, and +3 as previously described. Allele frequencies designated (0) were less common in Australian cases compared to controls (OR = 0.80, 95% CI 0.62-1.03). Combined analysis including all previously published ancestral European Rep1 data yielded a highly significant association between the 0 allele and a reduced risk for PD (OR = 0.79, 95% CI 0.70-0.89, p = 0.0001). Further study must now proceed to examine in detail this interesting and biologically plausible genetic association. (C) 2004 Elsevier Ireland Ltd. All rights reserved.
Resumo:
After ingestion of a standardized dose of ethanol, alcohol concentrations were assessed, over 3.5 hours from blood (six readings) and breath (10 readings) in a sample of 412 MZ and DZ twins who took part in an Alcohol Challenge Twin Study (ACTS). Nearly all participants were subsequently genotyped on two polymorphic SNPs in the ADH1B and ADH1C loci known to affect in vitro ADH activity. In the DZ pairs, 14 microsatellite markers covering a 20.5 cM region on chromosome 4 that includes the ADH gene family were assessed, Variation in the timed series of autocorrelated blood and breath alcohol readings was studied using a bivariate simplex design. The contribution of a quantitative trait locus (QTL) or QTL's linked to the ADH region was estimated via a mixture of likelihoods weighted by identity-by-descent probabilities. The effects of allelic substitution at the ADH1B and ADH1C loci were estimated in the means part of the model simultaneously with the effects sex and age. There was a major contribution to variance in alcohol metabolism due to a QTL which accounted for about 64% of the additive genetic covariation common to both blood and breath alcohol readings at the first time point. No effects of the ADH1B*47His or ADH1C*349Ile alleles on in vivo metabolism were observed, although these have been shown to have major effects in vitro. This implies that there is a major determinant of variation for in vivo alcohol metabolism in the ADH region that is not accounted for by these polymorphisms. Earlier analyses of these data suggested that alcohol metabolism is related to drinking behavior and imply that this QTL may be protective against alcohol dependence.