51 resultados para Generalized Lebesgue Spaces
Resumo:
The quasi mode theory of macroscopic quantization in quantum optics and cavity QED developed by Dalton, Barnett and Knight is generalized. This generalization allows for cases in which two or more quasi permittivities, along with their associated mode functions, are needed to describe the classical optics device. It brings problems such as reflection and refraction at a dielectric boundary, the linear coupler, and the coupling of two optical cavities within the scope of the theory. For the most part, the results that are obtained here are simple generalizations of those obtained in previous work. However the coupling constants, which are of great importance in applications of the theory, are shown to contain significant additional terms which cannot be 'guessed' from the simpler forms. The expressions for the coupling constants suggest that the critical factor in determining the strength of coupling between a pair of quasi modes is their degree of spatial overlap. In an accompanying paper a fully quantum theoretic derivation of the laws of reflection and refraction at a boundary is given as an illustration of the generalized theory. The quasi mode picture of this process involves the annihilation of a photon travelling in the incident region quasi mode, and the subsequent creation of a photon in either the incident region or transmitted region quasi modes.
Resumo:
The generalization of the quasi mode theory of macroscopic quantization in quantum optics and cavity QED presented in the previous paper, is applied to provide a fully quantum theoretic derivation of the laws of reflection and refraction at a boundary. The quasi mode picture of this process involves the annihilation of a photon travelling in the incident region quasi mode, and the subsequent creation of a photon in either the incident region or transmitted region quasi modes. The derivation of the laws of reflection and refraction is achieved through the dual application of the quasi mode theory and a quantum scattering theory based on the Heisenberg picture. Formal expressions from scattering theory are given for the reflection and transmission coefficients. The behaviour of the intensity for a localized one photon wave packet coming in at time minus infinity from the incident direction is examined and it is shown that at time plus infinity, the light intensity is only significant where the classical laws of reflection and refraction predict. The occurrence of both refraction and reflection is dependent upon the quasi mode theory coupling constants between incident and transmitted region quasi modes being nonzero, and it is seen that the contributions to such coupling constants come from the overlap of the mode functions in the boundary layer region, as might be expected from a microscopic theory.
Resumo:
We assessed the effectiveness of two generalized visual training programmes in enhancing visual and motor performance for racquet sports. Forty young participants were assigned equally to groups undertaking visual training using Revien and Gabor's Sports Vision programme (Group 1), visual training using Revien's Eyerobics (Group 2), a placebo condition involving reading (Group 3) and a control condition involving physical practice only (Group 4). Measures of basic visual function and of sport-specific motor performance were obtained from all participants before and immediately after a 4-week training period. Significant pre- to post-training differences were evident on some of the measures; however, these were not group-dependent. Contrary to the claims made by proponents of generalized visual training, we found no evidence that the visual training programmes led to improvements in either vision or motor performance above and beyond those resulting simply from test familiarity.
Resumo:
In this paper we use the mixture of topological and measure-theoretic dynamical approaches to consider riddling of invariant sets for some discontinuous maps of compact regions of the plane that preserve two-dimensional Lebesgue measure. We consider maps that are piecewise continuous and with invertible except on a closed zero measure set. We show that riddling is an invariant property that can be used to characterize invariant sets, and prove results that give a non-trivial decomposion of what we call partially riddled invariant sets into smaller invariant sets. For a particular example, a piecewise isometry that arises in signal processing (the overflow oscillation map), we present evidence that the closure of the set of trajectories that accumulate on the discontinuity is fully riddled. This supports a conjecture that there are typically an infinite number of periodic orbits for this system.
Resumo:
In this paper, we present a new unified approach and an elementary proof of a very general theorem on the existence of a semicontinuous or continuous utility function representing a preference relation. A simple and interesting new proof of the famous Debreu Gap Lemma is given. In addition, we prove a new Gap Lemma for the rational numbers and derive some consequences. We also prove a theorem which characterizes the existence of upper semicontinuous utility functions on a preordered topological space which need not be second countable. This is a generalization of the classical theorem of Rader which only gives sufficient conditions for the existence of an upper semicontinuous utility function for second countable topological spaces. (C) 2002 Elsevier Science B.V. All rights reserved.
Resumo:
Four animal models were used to quantitatively evaluate hepatic alterations in this study: (1) a carbon tetrachloride control group (phenobarbital treatment only), (2) a CCl4-treated group (phenobarbital with CCl4 treatment), (3) an alcohol-treated group (liquid diet with alcohol treatment), and (4) a pair-fed alcohol control group (liquid diet only). At the end of induction, single-pass perfused livers were used to conduct multiple indicator dilution (MID) studies. Hepatic spaces (vascular space, extravascular albumin space, extravascular sucrose space, and cellular distribution volume) and water hepatocyte permeability/surface area product were estimated from nonlinear regression of outflow concentration versus time profile data. The hepatic extraction ratio of H-3-taurocholate was determined by the nonparametric moments method. Livers were then dissected for histopathologic analyses (e.g., fibrosis index, number of fenestrae). In these 4 models, CCl4-treated rats were found to have the smallest vascular space, extravascular albumin space, H-3-taurocholate extraction, and water hepatocyte permeability/surface area product but the largest extravascular sucrose space and cellular distribution volume. In addition, a linear relationship was found to exist between histopathologic analyses (fibrosis index or number of fenestrae) and hepatic spaces. The hepatic extraction ratio of H-3-taurocholate and water hepatocyte permeability/surface area product also correlated to the severity of fibrosis as defined by the fibrosis index. In conclusion, the multiple indicator dilution data obtained from the in situ perfused rat liver can be directly related to histopathologic analyses.
Resumo:
In the present paper, we establish two fixed point theorems for upper semicontinuous multivalued mappings in hyperconvex metric spaces and apply these to study coincidence point problems and minimax problems. (C) 2002 Elsevier Science (USA). All rights reserved.
Resumo:
What interactions are sufficient to simulate arbitrary quantum dynamics in a composite quantum system? Dodd [Phys. Rev. A 65, 040301(R) (2002)] provided a partial solution to this problem in the form of an efficient algorithm to simulate any desired two-body Hamiltonian evolution using any fixed two-body entangling N-qubit Hamiltonian, and local unitaries. We extend this result to the case where the component systems are qudits, that is, have D dimensions. As a consequence we explain how universal quantum computation can be performed with any fixed two-body entangling N-qudit Hamiltonian, and local unitaries.
Resumo:
Difference equations which discretely approximate boundary value problems for second-order ordinary differential equations are analysed. It is well known that the existence of solutions to the continuous problem does not necessarily imply existence of solutions to the discrete problem and, even if solutions to the discrete problem are guaranteed, they may be unrelated and inapplicable to the continuous problem. Analogues to theorems for the continuous problem regarding a priori bounds and existence of solutions are formulated for the discrete problem. Solutions to the discrete problem are shown to converge to solutions of the continuous problem in an aggregate sense. An example which arises in the study of the finite deflections of an elastic string under a transverse load is investigated. The earlier results are applied to show the existence of a solution; the sufficient estimates on the step size are presented. (C) 2003 Elsevier Science Ltd. All rights reserved.