72 resultados para GUIDED BONE REGENERATION
Resumo:
To investigate bone mineral accretion in growing children, the Saskatchewan Pediatric Bone Mineral Accrual Study was initiated in 1991. The study involves the collection of dietary and physical activity information along with anthropometric growth and maturity measurements every 6 months and dual-energy X-ray absorptiometer (DXA) bone scans of the whole body, AP lumbar spine and proximal femur taken annually, The study has now finished its 6th year and 68 males and 72 females from an original sample of 228 elementary schoolchildren are still involved, To investigate how bone mineral at clinically important sites proceeds in relation to maturation we developed distance and velocity growth curves for height and bone mineral content (BMC) for the AP lumbar spine, the femoral neck and the whole body, In both boys and girls, over 35% of total body and AP spine bone mineral and over 27% of the bone mineral at the femoral neck was laid down during the 4-year adolescent period surrounding peak linear growth velocity. The clinical significance of these values can be appreciated by consideration of the fact that as much bone mineral will be laid down during these 4 adolescent growing years as most people will lose during all of adult life.
Resumo:
We measured bone mineral content (BMC) and estimated calcium accretion in children to provide insight into dietary calcium requirements during growth. Anthropometric measurements were done semiannually and whole-body BMC was measured annually by dual-energy X-ray absorptiometry for 4 y in 228 children (471 scans in 113 boys and 507 scans in 115,girls). Mean values for BMC, skeletal area, and height were calculated for 1-y age groups from 9.5 to 19.5 y of age. Cross-sectional analysis of the pooled data gave peak height velocity and peak BMC velocity (PBMCV) and the ages at which these occurred (13.3 y in boys and 11.4 y in girls). PBMCV did not peak until 1.2 y after peak height velocity in boys and 1.6 y after peak height velocity in girls. Within 3 y on either side of PBMCV, boys had consistently higher BMC and BMC velocity compared with girls and the discrepancy increased steadily through puberty. Three years before PBMCV, BMC Values in girls were 69% of those in boys; 3 y after peak height velocity this proportion fell to 51%. PBMCV was 320 g/y in boys and 240 g/y in girls. Under the assumption that bone mineral is 32.2% calcium, these values corresponded to a daily calcium retention of 282 mg in boys and 212 mg in girls. Individual Values could be much greater. In one boy in a group of six subjects for whom there were enough data for individual analysis through puberty, PBMCV was 555 g Ca/y or 490 mg Ca/d. Such high skeletal demands for calcium require large dietary calcium intakes and such requirements may not be met immediately in some children.
Resumo:
Maximization of bone accrual during the growing years is thought to be an important factor in minimizing fracture risk in old age. Mechanical loading through physical activity has been recommended as a modality for the conservation of bone mineral in adults; however, few studies have evaluated the impact of different loading regimes in growing children. The purpose of this study was to compare bone mineral density (BMD) in weight-bearing and non-weight-bearing limbs in 17 children with unilateral Legg Calve Perthes Disease (LCPD). Children with this condition have an altered weight-bearing pattern whereby there is increased mechanical loading on the noninvolved normal hip and reduced loading on the involved painful hip. Thus, these children provide a unique opportunity to study the impact of differential mechanical loading on BMD during the growing years while controlling for genetic disposition. BMD at four regions of the proximal femur (trochanter, intertrochanter, femoral neck, total of the regions) was measured using dual energy x-ray absorptiometry (DXA), and the values were compared between the involved and noninvolved sides of the children with LCPD. The BMD of both sides also were compared with normative values based on both chronological and skeletal age data. A significantly higher BMD was found on the noninvolved side over the involved side for all regions (P
Resumo:
The hypothesis that growth hormone (GH) up-regulates the expression of enzymes, matrix proteins, and differentiation markers involved in mineralization of tooth and bone matrices was tested by the treatment of Lewis dwarf rats with GH over 5 days, The molar teeth and associated alveolar bone were processed for immunohistochemical demonstration of bone morphogenetic proteins 2 and 4 (BMP-2 and -4), bone morphogenetic protein type IA receptor (BMPR-IA), bone alkaline phosphatase (ALP), osteocalcin (OC), osteopontin (OPN), bone sialoprotein (BSP), and E11 protein (E11), The cementoblasts, osteoblasts, and periodontal ligament (PDL) cells responded to GH by expressing BMP-2 and -4, BMPR-IA, ALP, OC, and OPN and increasing the numbers of these cells. No changes were found in patterns of expression of the late differentiation markers BSP and E11 in response to GH, Thus, GH evokes expression of bone markers of early differentiation in cementoblasts, PDL cells, and osteoblasts of the periodontium. We propose that the induction of BMP-2 and -4 and their receptor by GH compliments the role of GH-induced insulin-like growth factor 1 (IGF-1) in promoting bone and tooth root formation.
Resumo:
Although the principles of axon growth are well understood in vitro the mechanisms guiding axons in vivo are less clear. It has been postulated that growing axons in the vertebrate brain follow borders of neuroepithelial cells expressing specific regulatory genes. In the present study we reexamined this hypothesis by analysing the earliest growing axons in the forebrain of embryonic zebrafish. Confocal laser scanning microscopy was used to determine the spatiotemporal relationship between growing axons and the expression pattern of eight regulatory genes in zebrafish brain. Pioneer axons project either longitudinally or dorsoventrally to establish a scaffold of axon tracts during this developmental period. Each of the regulatory genes was expressed in stereotypical domains and the borders of some were oriented along dorsoventral and longitudinal planes. However, none of these borders clearly defined the trajectories of pioneer axons. In two cases axons coursed in proximity to the borders of shh and pax6, but only for a relatively short portion of their pathway. Only later growing axons were closely apposed to the borders of some gene expression domains. These results suggest that pioneer axons in the embryonic forebrain do not follow continuous pathways defined by the borders of regulatory gene expression domains, (C) 2000 Academic Press.
Resumo:
We recently demonstrated that suppressed bone remodeling allows microdamage to accumulate and causes reductions in some mechanical properties. However, in our previous study, I year treatment with high-dose etidronate (EHDP) did not increase microdamage accumulation in most skeletal sites of dogs in spite of complete remodeling suppression and the occurrence of spontaneous fractures of ribs and/or thoracic spinous processes. This study evaluates the effects of EHDP on microdamage accumulation and biomechanical properties before fractures occur. Thirty-six female beagles, 1-2 years old, were treated daily for 7 months with subcutaneous injections of saline vehicle (CNT) or EHDP at 0.5 (E-low) or 5 mg/kg per day (E-high). After killing, bone mineral measurement, histomorphometry, microdamage analysis, and biomechanical testing were performed. EHDP treatment suppressed intracortical and trabecular remodeling by 60%-75% at the lower dose, and by 100% at the higher dose. Osteoid accumulation caused by a mineralization deficit occurred only in the E-high group, and this led to a reduction of mineralized bone mass. Microdamage accumulation increased significantly by two- to fivefold in the rib, lumbar vertebra, ilium, and thoracic spinous process in E-low, and by twofold in the lumbar vertebra and ilium in E-high. However, no significant increase in damage accumulation was observed in ribs or thoracic spinous processes in E-high where fractures occur following 12 months of treatment. Mechanical properties of lumbar vertebrae and thoracic spinous processes were reduced significantly in both E-low and E-high. These findings suggest that suppression of bone remodeling by EHDP allows microdamage accumulation, but that osteoid accumulation reduces production of microdamage. (Bone 29:271-278; 2001) (C) 2001 by Elsevier Science Inc. All rights reserved.
Resumo:
We recently demonstrated that suppression of bone remodeling allows microdamage to accumulate, leading to reduced bone toughness in the rib cortex of dogs. This study evaluates the effects of reduced bone turnover produced by bisphosphonates on microdamage accumulation and biomechanical properties at clinically relevant skeletal sites in the same dogs. Thirty-six female beagles, 1-2 years old, were divided into three groups. The control group was treated daily for 12 months with saline vehicle (CNT), The remaining two groups were treated daily with risedronate at a dose of 0.5 mg/kg per day (RIS), or alendronate at 1.0 mg/kg per day (ALN) orally, The doses of these bisphosphonates were six times the clinical doses approved for treatment of osteoporosis in humans. After killing, the L-1 vertebra was scanned by dual-energy X-ray absorptiometry (DXA), and the L-2 vertebra and right ilium were assigned to histomorphometry, The L-3 vertebra, left ilium, Th-2 spinous process, and right femoral neck were used for microdamage analysis. The L-4 vertebra and Th-1 spinous process were mechanically tested to failure in compression and shear, respectively. One year treatment with risedronate or alendronate significantly suppressed trabecular remodeling in vertebrae (RIS 90%, ALN 95%) and ilium (RIS 76%, ALN 90%) without impairment of mineralization, and significantly increased microdamage accumulation in all skeletal sites measured. Trabecular bone volume and vertebral strength increased significantly following 12 month treatment. However, normalized toughness of the L-4 vertebra was reduced by 21% in both RIS (p = 0.06) and ALN (p = 0.05) groups. When the two bisphosphonate groups were pooled in a post hoc fashion for analysis, this reduction in toughness reached statistical significance (p = 0.02), This study demonstrates that suppression of trabecular bone turnover by high doses of bisphosphonates is associated with increased vertebral strength, even though there is significant microdamage accumulation and a reduction in the intrinsic energy absorption capacity of trabecular bone. (C) 2001 by Elsevier Science Inc. All rights reserved.
Resumo:
We present an ultra-high bandwidth all-optical digital signal regeneration device concept utilising non-degenerate parametric interaction in a one-dimensional waveguide. Performance is analysed in terms of re-amplification, re-timing, and re-shaping (including centre frequency correction) of time domain multiplexed signals. Bandwidths of 10-100 THz are achievable. (C) 2001 Published by Elsevier Science B.V.