42 resultados para Field data analyser
Resumo:
Seven hundred and nineteen samples from throughout the Cainozoic section in CRP-3 were analysed by a Malvern Mastersizer laser particle analyser, in order to derive a stratigraphic distribution of grain-size parameters downhole. Entropy analysis of these data (using the method of Woolfe and Michibayashi, 1995) allowed recognition of four groups of samples, each group characterised by a distinctive grain-size distribution. Group 1, which shows a multi-modal distribution, corresponds to mudrocks, interbedded mudrock/sandstone facies, muddy sandstones and diamictites. Group 2, with a sand-grade mode but showing wide dispersion of particle size, corresponds to muddy sandstones, a few cleaner sandstones and some conglomerates. Group 3 and Group 4 are also sand-dominated, with better grain-size sorting, and correspond to clean, well-washed sandstones of varying mean grain-size (medium and fine modes, respectively). The downhole disappearance of Group 1, and dominance of Groups 3 and 4 reflect a concomitant change from mudrock- and diamictite-rich lithology to a section dominated by clean, well-washed sandstones with minor conglomerates. Progressive downhole increases in percentage sand and principal mode also reflect these changes. Significant shifts in grain-size parameters and entropy group membership were noted across sequence boundaries and seismic reflectors, as recognised in others studies.
Resumo:
We study the scattering of the quantized electromagnetic field from a linear, dispersive dielectric using the scattering formalism for quantum fields. The medium is modeled as a collection of harmonic oscillators with a number of distinct resonance frequencies. This model corresponds to the Sellmeir expansion, which is widely used to describe experimental data for real dispersive media. The integral equation for the interpolating field in terms of the in field is solved and the solution used to find the out field. The relation between the ill and out creation and annihilation operators is found that allows one to calculate the S matrix for this system. In this model, we find that there are absorption bands, but the input-output relations are completely unitary. No additional quantum-noise terms are required.
Resumo:
The cost and risk associated with mineral exploration in Australia increases significantly as companies move into deeper regolith-covered terrain. The ability to map the bedrock and the depth of weathering within an area has the potential to decrease this risk and increase the effectiveness of exploration programs. This paper is the second in a trilogy concerning the Grant's Patch area of the Eastern Goldfields. The recent development of the VPmg potential field inversion program in conjunction with the acquisition of high-resolution gravity data over an area with extensive drilling provided an opportunity to evaluate three-dimensional gravity inversion as a bedrock and regolith mapping tool. An apparent density model of the study area was constructed, with the ground represented as adjoining 200 m by 200 m vertical rectangular prisms. During inversion VPmg incrementally adjusted the density of each prism until the free-air gravity response of the model replicated the observed data. For the Grant's Patch study area, this image of the apparent density values proved easier to interpret than the Bouguer gravity image. A regolith layer was introduced into the model and realistic fresh-rock densities assigned to each basement prism according to its interpreted lithology. With the basement and regolith densities fixed, the VPmg inversion algorithm adjusted the depth to fresh basement until the misfit between the calculated and observed gravity response was minimised. The resulting geometry of the bedrock/regolith contact largely replicated the base of weathering indicated by drilling with predicted depth of weathering values from gravity inversion typically within 15% of those logged during RAB and RC drilling.
Resumo:
The drosophilid fauna in Australia offers an important study system for evolutionary studies. Larval hosts are unknown for most species, however, and this imposes serious limits to understanding their ecological context. The present paper reports the first systematic, large-scale field survey of potential larval hosts to be conducted, in order to obtain an overview of the host utilisation patterns of Australian drosophilids. Potential hosts (mostly fruit and fungi) were collected from different vegetation types in northern and eastern Australia. Host data were obtained for 81 drosophilid species from 17 genera (or 28% of the known Fauna). Most genera were restricted to either fruit or fungi, although Scaptodrosophila spp. and Drosophila spp. were recorded from fruit, fungi, flowers and compost, and Drosophila spp. also emerged from the parasitic plant Balanophora fungosa. There was no evidence that use of either fruit or fungi was correlated to host phylogeny. Drosophilids emerged from hosts collected from all sampled vegetation types (rainforest, open forest, heath and domestic environments). Vegetation type influenced drosophilid diversity, both by affecting host availability and because some drosophilid species apparently restricted their search for hosts to particular vegetation types.
Resumo:
We conducted a randomised, controlled field trial during 1998/1999 to evaluate the hypothesis that improved piglet management would improve the reproductive performance of smallholder sows. Simple changes were introduced into the treatment herds including the construction of a heated piglet-separation pen, vitamin injections, creep feeding and early weaning. The control herds were unchanged. Data were collected from all sows in each enrolled herd over two farrowings. We enrolled 176 sows, including 170 (96 treatment and 74 control) sows that remained throughout the study period. Significant differences in the reproductive performance of treatment and control sows were recorded for interfarrowing interval (median 176 versus 220 days), average number liveborn over 2 litters (11 versus 12), and average preweaning mortality over 2 litters (0 versus 37%). Based on a discount rate of 17%, the benefit-cost ratio of the treatment was 11.1 and 12.1 over 3 and 5 years, respectively. (C) 2001 Elsevier Science B.V. All rights reserved.
Resumo:
Measurements of mean and fluctuating velocity and temperature and their self- and cross-products to the third-order are presented for a heated axisymmetric air jet. Froude numbers in the range of 3500 13,190, Reynolds numbers in the range of 3470-8500 and non-dimensional streamwise distances. X*, from 0.27 to 1.98 are covered by the data. It was found that turbulence intensity decreases for the heated jet in the region between the inertia dominated and the buoyancy dominated regions which is contrary to findings with helium jets mixing with ambient air to produce density fluctuations. The effects of heating on the turbulent kinetic energy budget and the temperature variance budget show small differences for the inertia dominated region and the intermediate region which help to explain the transition process to the far field plume region. Constants are evaluated for the isotropic eddy diffusivity and generalised gradient hypothesis models as well as the scalar variance model. No significant effect of heating on the dissipation time-scale ratio was found. A novel wire array with an inclined cold wire was used. Measurements obtained with this probe are found to lead to asymmetries in some of the higher-order products. Further investigation suggested that the asymmetries are attributable to an as yet unreported interference effect produced by the leading prong of the inclined temperature wire, The effect may also have implications for inclined velocity wires which contain a temperature component when used in heated flows. (C) 2002 Elsevier Science Inc. All rights reserved.
Resumo:
Observational data collected in the Lake Tekapo hydro catchment of the Southern Alps in New Zealand are used to analyse the wind and temperature fields in the alpine lake basin during summertime fair weather conditions. Measurements from surface stations, pilot balloon and tethersonde soundings, Doppler sodar and an instrumented light aircraft provide evidence of multi-scale interacting wind systems, ranging from microscale slope winds to mesoscale coast-to-basin flows. Thermal forcing of the winds occurred due to differential heating as a consequence of orography and heterogeneous surface features, which is quantified by heat budget and pressure field analysis. The daytime vertical temperature structure was characterised by distinct layering. Features of particular interest are the formation of thermal internal boundary layers due to the lake-land discontinuity and the development of elevated mixed layers. The latter were generated by advective heating from the basin and valley sidewalls by slope winds and by a superimposed valley wind blowing from the basin over Lake Tekapo and up the tributary Godley Valley. Daytime heating in the basin and its tributary valleys caused the development of a strong horizontal temperature gradient between the basin atmosphere and that over the surrounding landscape, and hence the development of a mesoscale heat low over the basin. After noon, air from outside the basin started flowing over mountain saddles into the basin causing cooling in the lowest layers, whereas at ridge top height the horizontal air temperature gradient between inside and outside the basin continued to increase. In the early evening, a more massive intrusion of cold air caused rapid cooling and a transition to a rather uniform slightly stable stratification up to about 2000 m agl. The onset time of this rapid cooling varied about 1-2 h between observation sites and was probably triggered by the decay of up-slope winds inside the basin, which previously countered the intrusion of air over the surrounding ridges. The intrusion of air from outside the basin continued until about mid-night, when a northerly mountain wind from the Godley Valley became dominant. The results illustrate the extreme complexity that can be caused by the operation of thermal forcing processes at a wide range of spatial scales.
Resumo:
The effects of wing shape, wing size, and fluctuating asymmetry in these measures oil the field fitness of T. nr. brassicae and T. pretiosum were investigated. Trichogramma wasps mass-reared on eggs of the factitious host Sitotroga cerealella were released in tomato paddocks and those females ovipositing on Helicoverpo spp. eggs were recaptured. Comparisons of the recaptured group with a sample from the release population were used to assess fitness. Wing data were obtained by positioning landmarks on mounted forewings. Size was then measured as the centroid size computed from landmark distances, while Procrustes analysis followed by principal component analysis was used to assess wing shape. Similar findings were obtained for both Trichogramma species: fitness of wasps was strongly related to wing size and some shape dimensions, but not to the asymmetries of these measures. Wasps which performed well in the field had larger wings and a different wing shape compared to wasps from the mass reared population. Both size and the shape dimensions were linearly associated with fitness although there was also some evidence for non-linear selection on shape. The results suggest that wing shape and wing size are reliable predictors of field fitness for these Trichogramma wasps.
Resumo:
The tests that are currently available for the measurement of overexpression of the human epidermal growth factor-2 (HER2) in breast cancer have shown considerable problems in accuracy and interlaboratory reproducibility. Although these problems are partly alleviated by the use of validated, standardised 'kits', there may be considerable cost involved in their use. Prior to testing it may therefore be an advantage to be able to predict from basic pathology data whether a cancer is likely to overexpress HER2. In this study, we have correlated pathology features of cancers with the frequency of HER2 overexpression assessed by immunohistochemistry (IHC) using HercepTest (Dako). In addition, fluorescence in situ hybridisation (FISH) has been used to re-test the equivocal cancers and interobserver variation in assessing HER2 overexpression has been examined by a slide circulation scheme. Of the 1536 cancers, 1144 (74.5%) did not overexpress HER2. Unequivocal overexpression (3+ by IHC) was seen in 186 cancers (12%) and an equivocal result (2+ by IHC) was seen in 206 cancers (13%). Of the 156 IHC 3+ cancers for which complete data was available, 149 (95.5%) were ductal NST and 152 (97%) were histological grade 2 or 3. Only 1 of 124 infiltrating lobular carcinomas (0.8%) showed HER2 overexpression. None of the 49 'special types' of carcinoma showed HER2 overexpression. Re-testing by FISH of a proportion of the IHC 2+ cancers showed that only 25 (23%) of those assessable exhibited HER2 gene amplification, but 46 of the 47 IHC 3+ cancers (98%) were confirmed as showing gene amplification. Circulating slides for the assessment of HER2 score showed a moderate level of agreement between pathologists (kappa 0.4). As a result of this study we would advocate consideration of a triage approach to HER-2 testing. Infiltrating lobular and special types of carcinoma may not need to be routinely tested at presentation nor may grade 1 NST carcinomas in which only 1.4% have been shown to overexpress HER2. Testing of these carcinomas may be performed when HER2 status is required to assist in therapeutic or other clinical/prognostic decision-making. The highest yield of HER2 overexpressing carcinomas is seen in the grade 3 NST subgroup in which 24% are positive by IHC. (C) 2003 Elsevier Science Ltd. All rights reserved.
Resumo:
Prior theoretical studies indicate that the negative spatial derivative of the electric field induced by magnetic stimulation may he one of the main factors contributing to depolarization of the nerve fiber. This paper studies this parameter for peripheral nerve stimulation (PNS) induced by time.-varying gradient fields during MRI scans. The numerical calculations are based on an efficient, quasi-static, finite-difference scheme and an anatomically realistic human, full-body model. Whole-body cylindrical and planar gradient sets in MRI systems and various input signals have been explored. The spatial distributions of the induced electric field and their gradients are calculated and attempts are made to correlate these areas with reported experimental stimulation data. The induced electrical field pattern is similar for both the planar coils and cylindrical coils. This study provides some insight into the spatial characteristics of the induced field gradients for PNS in MRI, which may be used to further evaluate the sites where magnetic stimulation is likely to occur and to optimize gradient coil design.
Resumo:
In modern magnetic resonance imaging (MRI), patients are exposed to strong, nonuniform static magnetic fields outside the central imaging region, in which the movement of the body may be able to induce electric currents in tissues which could be possibly harmful. This paper presents theoretical investigations into the spatial distribution of induced electric fields and currents in the patient when moving into the MRI scanner and also for head motion at various positions in the magnet. The numerical calculations are based on an efficient, quasi-static, finite-difference scheme and an anatomically realistic, full-body, male model. 3D field profiles from an actively shielded 4T magnet system are used and the body model projected through the field profile with a range of velocities. The simulation shows that it possible to induce electric fields/currents near the level of physiological significance under some circumstances and provides insight into the spatial characteristics of the induced fields. The results are extrapolated to very high field strengths and tabulated data shows the expected induced currents and fields with both movement velocity and field strength. (C) 2003 Elsevier Science (USA). All rights reserved.
Resumo:
In a 2-yr multiple-site field study conducted in western Nebraska during 1999 and 2000, optimum dryland corn (Zea mays L.) population varied from less than 1.7 to more than 5.6 plants m(-2), depending largely on available water resources. The objective of this study was to use a modeling approach to investigate corn population recommendations for a wide range of seasonal variation. A corn growth simulation model (APSIM-maize) was coupled to long-term sequences of historical climatic data from western Nebraska to provide probabilistic estimates of dryland yield for a range of corn populations. Simulated populations ranged from 2 to 5 plants m(-2). Simulations began with one of three levels of available soil water at planting, either 80, 160, or 240 mm in the surface 1.5 m of a loam soil. Gross margins were maximized at 3 plants m(-2) when starting available water was 160 or 240 mm, and the expected probability of a financial loss at this population was reduced from about 10% at 160 mm to 0% at 240 mm. When starting available water was 80 mm, average gross margins were less than $15 ha(-1), and risk of financial loss exceeded 40%. Median yields were greatest when starting available soil water was 240 mm. However, perhaps the greater benefit of additional soil water at planting was reduction in the risk of making a financial loss. Dryland corn growers in western Nebraska are advised to use a population of 3 plants m(-2) as a base recommendation.