33 resultados para Excretion.


Relevância:

10.00% 10.00%

Publicador:

Resumo:

We studied the effect of arsenic exposure on the haem biosynthetic pathway in the rat and humans. Significant increases in protoporphyrin IX, coproporphyrin III, coproporphyrin I were observed in the blood, liver and kidney, and in the urine of rats after a single dose of arsenic. The level of increase was dependent on the arsenic species present. Most of porphyrin concentrations in the tissues increased within 24 hr and urinary excretion elevated within 48 hr. In the human study, we collected urine samples from 113 people who live in Xing Ren of Guizhou Province, a coal-borne arsenicosis endemic area in southwest of PR China and from 30 people who live in Xing Yi (about 80 km southwest of Xing Ren) where arsenicosis is not prevalent. We analyzed the urinary porphyrins using HPLC. Results indicate that all urinary porphyrins were higher in the arsenic exposed group than those in the control group. Women, children and older age people spend much of their time indoors, they had greater increases of urinary arsenic and porphyrins. They were the higher risk groups among the study subjects. A positive correlation between the urinary arsenic levels and porphyrin concentrations demonstrated the effect of arsenic on haem biosynthesis. Significant alteration in the porphyrin excretion profiles of the younger age (

Relevância:

10.00% 10.00%

Publicador:

Resumo:

ATP-dependent K+ channels (K-ATP) account for most of the recycling of K+ which enters the proximal tubules cell via Na, K-ATPase. In the mitochondrial membrane, opening of these channels preserves mitochondrial viability and matrix volume during ischemia. We examined KATP channel modulation in renal ischemia-reperfusion injury (IRI), using an isolated perfused rat kidney (IPRK) model, in control, IRI, IRI + 200 muM diazoxide (a K-ATP opener), IRI + 10 muM glibenclamide (a K-ATP blocker) and IRI + 200 muM diazoxide + 10 muM glibenclamide groups. IRI was induced by 2 periods of warm ischemia, followed by 45 min of reperfusion. IRI significantly decreased glomerular filtration rate (GFR) and increased fractional excretion of sodium (FENa) (p < 0.01). Neither diazoxide nor glibenclamide had an effect on control kidney function other than an increase in renal vascular resistance produced by glibenclamide. Pretreatment with 200 muM diazoxide reduced the postischemic increase in FENa (p < 0.05). Adding 10 muM glibenclamide inhibited the diazoxide effect on postischemic FENa (p < 0.01). Histology showed that kidneys pretreated with glibenclamide demonstrated an increase in injure in the thick ascending limb of outer medulla (p < 0.05). Glibenclamide significantly decreased post ischemic renal vascular resistance (p < 0.05). but had no significant effect on other renal function parameters. Our results suggest that sodium reabsorption is improved by K-ATP activation and blockade of K-ATP channels during IRI has an injury enhancing effect on renal epithelial function and histology. This may be mediated through K-ATP modulation in cell and or mitochondrial inner membrane.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Uptake of nutrients and water depends on the growth of roots through elongation of individual cells near the. root tip. Many of the numerous components of Type I primary cell walls, those of dicotyledons and monocotyledons other than grasses (Poaceae), have been determined, and many hypotheses have been proposed for the control of cell expansion. This important aspect of plant growth still needs elucidation, however. A model is proposed in which pectin, which occurs as a calcium (Ca) pectate gel between the load-bearing cellulose microfibrils and xyloglucan (XG) chains, controls the rate at which cells expand. It is considered that the increasing tension generated by the expanding cell is transmitted to interlocked XG chains and cellulose microfibrils. The resulting deformation of the embedded Ca pectate gel elicits the excretion of protons from the cytoplasm, possibly via compounds such as cell wall-associated kinases, that weakens the Ca pectate gel, permitting slippage of XG molecules through the action of expansin. Further slippage is prevented by deformation of the pectic gel, proton diffusion, and the transfer of residual tension to adjacent XG chains. Evidence for this model is based on the effects of pH, Ca, and aluminum (Al) on root elongation and on the reactions of these cations with Ca pectate. This model allows for genetic selection of plants and adaptation of individual plants to root environmental conditions.