86 resultados para Endurance exercise training


Relevância:

100.00% 100.00%

Publicador:

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Expansion of the capillary network, or angiogenesis, occurs following endurance training. This process, which is reliant on the presence of VEGF (vascular endothelial growth factor), is an adaptation to a chronic mismatch between oxygen demand and supply. Patients with IC (intermittent claudication) experience pain during exercise associated with an inadequate oxygen delivery to the muscles. Therefore the aims of the present study were to examine the plasma VEGF response to acute exercise, and to establish whether exercise training alters this response in patients with IC. In Part A, blood was collected from patients with IC (n = 18) before and after (+ 20 and + 60 min post-exercise) a maximal walking test to determine the plasma VEGF response to acute exercise. VEGF was present in the plasma of patients (45.11 +/- 29.96 pg/ml) and was unchanged in response to acute exercise. Part B was a training study to determine whether exercise training altered the VEGF response to acute exercise. Patients were randomly assigned to a treatment group (TMT; n = 7) that completed 6 weeks of high-intensity treadmill training, or to a control group (CON; n = 6). All patients completed a maximal walking test before and after the intervention, with blood samples drawn as for Part A. Training had no effect on plasma VEGF at rest or in response to acute exercise, despite a significant increase in maximal walking time in the TMT group (915 + 533 to 1206 + 500 s; P = 0.009) following the intervention. The absence of a change in plasma VEGF may reflect altered VEGF binding at the endothelium, although this cannot be confirmed by the present data.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Purpose: Most studies that use either a single exercise session, exercise training, or a cross-sectional design have failed to find a relationship between exercise and plasma lipoprotein(a) [Lp(a)] concentrations. However, a few studies investigating the effects of longer and/or more strenuous exercise have shown elevated Lp(a) concentrations, possibly as an acute-phase reactant to muscle damage. Based on the assumption that greater muscle damage would occur with exercise of longer duration, the purpose of the present study was to determine whether exercise of longer duration would increase Lp(a) concentration and creatine kinase. (CK) activity more than exercise of shorter duration. Methods: Ten endurance-trained men (mean +/- SD: age, 27 +/- 6 yr; maximal oxygen consumption [(V)over dotO(2max)], 57 +/- 7 mL(.)kg(-1) min(-1)) completed two separate exercise sessions at 70% (V)over dotO(2max). One session required 900 kcal of energy expenditure (60 +/- 6 min), and the other required 1500 kcal (112 +/- 12 min). Fasted blood samples were taken immediately before (0-pre), immediately after (0-post), 1 d after (1-post), and 2 d after (2-post) each exercise session. Results: CK activity increased after both exercise sessions (mean +/- SE; 800 kcal: 0-pre 55 +/- 11, 1-post 168 +/- 64 U(.)L(-1.)min(-1); 1500 kcal: 0-pre 51 +/- 5, 1-post 187 +/- 30, 2-post 123 +/- 19 U(.)L(-1.)min(-1); P < 0.05). However, median Lp(a) concentrations were not altered by either exercise session (800 kcal: 0-pre 5.0 mg(.)dL(-1), 0-post 3.2 mg(.)dL(-1), 1-post 4.0 mg(.)dL(-1), 2-post 3.4 mg(.)dL(-1); 1500 kcal: 0-pre 5.8 mg(.)dL(-1), 0-post 4.3 mg(.)dL(-1), 1-post 3.2 mg(.)dL(-1), 2-post 5.3 mg(.)dL(-1)). In addition, no relationship existed between exercise-induced changes in CK activity and Lp(a) concentration (800 kcal: r = -0.26; 1500 kcal: r = -0.02). Conclusion: These results suggest that plasma Lp(a) concentration will not increase in response to minor exercise-induced muscle damage in endurance-trained runners.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Heat stroke is a life-threatening condition that can be fatal if not appropriately managed. Although heat stroke has been recognised as a medical condition for centuries, a universally accepted definition of heat stroke is lacking and the pathology of heat stroke is not fully understood. Information derived from autopsy reports and the clinical presentation of patients with heat stroke indicates that hyperthermia, septicaemia, central nervous system impairment and cardiovascular failure play important roles in the pathology of heat stroke. The current models of heat stroke advocate that heat stroke is triggered by hyperthermia but is driven by endotoxaemia. Endotoxaemia triggers the systemic inflammatory response, which can lead to systemic coagulation and haemorrhage, necrosis, cell death and multi-organ failure. However, the current heat stroke models cannot fully explain the discrepancies in high core temperature (Tc) as a trigger of heat stroke within and between individuals. Research on the concept of critical Tc: as a limitation to endurance exercise implies that a high Tc may function as a signal to trigger the protective mechanisms against heat stroke. Athletes undergoing a period of intense training are subjected to a variety of immune and gastrointestinal (GI) disturbances. The immune disturbances include the suppression of immune cells and their functions, suppression of cell-mediated immunity, translocation of lipopolysaccharide (LPS), suppression of anti-LPS antibodies, increased macrophage activity due to muscle tissue damage, and increased concentration of circulating inflammatory and pyrogenic cytokines. Common symptoms of exercise-induced GI disturbances include diarrhoea, vomiting, gastrointestinal bleeding, and cramps, which may increase gut-related LPS translocation. This article discusses the current evidence that supports the argument that these exercise-induced immune and GI disturbances may contribute to the development of endotoxaemia and heat stroke. When endotoxaemia can be tolerated or prevented, continuing exercise and heat exposure will elevate Tc to a higher level (> 42 degrees C), where heat stroke may occur through the direct thermal effects of heat on organ tissues and cells. We also discuss the evidence suggesting that heat stroke may occur through endotoxaemia (heat sepsis), the primary pathway of heat stroke, or hyperthermia, the secondary pathway of heat stroke. The existence of these two pathways of heat stroke and the contribution of exercise-induced immune and GI disturbances in the primary pathway of heat stroke are illustrated in the dual pathway model of heat stroke. This model of heat stroke suggests that prolonged intense exercise suppresses anti-LPS mechanisms, and promotes inflammatory and pyrogenic activities in the pathway of heat stroke.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The aims of this study were to examine the plasma concentrations of inflammatory mediators including cytokines induced by a single bout of eccentric exercise and again 4 weeks later by a second bout of eccentric exercise of the same muscle group. Ten untrained male subjects performed two bouts of the eccentric exercise involving the elbow flexors (6 sets of 5 repetitions) separated by four weeks. Changes in muscle soreness, swelling, and function following exercise were compared between the bouts. Blood was sampled before, immediately after, 1 h, 3 h, 6 h, 24 h (1 d), 48 h (2 d), 72 h (3 d), 96 h (4 d) following exercise bout to measure plasma creatine kinase (CK) activity, plasma concentrations of myoglobin (Mb), interleukin (IL)-1 beta, IL-1 receptor antagonist (IL-1ra), IL-4, IL-6, IL-8, IL-10, IL-12p40, tumor necrosis factor (TNF)-alpha, granulocyte colony-stimulating factor (G-CSF), myeloperoxidase (MPO), prostaglandin E-2 (PGE(2)), heat shock protein (HSP) 60 and 70. After the first bout, muscle soreness increased significantly, and there was also significant increase in upper arm circumference; muscle function decreased and plasma CK activity and Mb concentration increased significantly. These changes were significantly smaller after the second bout compared to the first bout, indicating muscle adaptation to the repeated bouts of the eccentric exercise. Despite the evidence of greater muscle damage after the first bout, the changes in cytokines and other inflammatory mediators were quite minor, and considerably smaller than that following endurance exercise. These results suggest that eccentric exercise-induced muscle damage is not associated with the significant release of cytokines into the systemic circulation. After the first bout, plasma G-CSF concentration showed a small but significant increase, whereas TNF-alpha and IL-8 showed significant decreases compared to the pre-exercise values. After the second bout, there was a significant increase in IL-10, and a significant decrease in IL-8. In conclusion, although there was evidence of severe muscle damage after the eccentric exercise, this muscle damage was not accompanied by any large changes in plasma cytokine concentrations. The minor changes in systemic cytokine concentration found in this study might reflect more rapid clearance from the circulation, or a lack of any significant metabolic or oxidative demands during this particular mode of exercise. In relation to the adaptation to the muscle damage, the anti-inflammatory cytokine IL-10 might work as one of the underlying mechanisms of action.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Purpose: For ultra-endurance athletes, whose energy expenditure is likely to be at the extremes of human tolerance for sustained periods of time, there is increased concern regarding meeting energy needs. Due to the lack of data outlining the energy requirements of such athletes, it is possible that those participating in ultra-endurance exercise are compromising performance, as well as health, as a result of inadequate nutrition and energy intake. To provide insight into this dilemma, we have presented a case study of a 37-yr-old ultra-marathon runner as he runs around the coast of Australia. Methods: Total energy expenditure was measured over a 2-wk period using the doubly labeled water technique. Results: The average total energy expenditure of the case subject was 6321 kcal.d(-1). Based on the expected accuracy and precision of the doubly labeled water technique the subject's total energy expenditure might range between 6095 and 6550 kcal.d(-1). The subject's average daily water turnover was 6.083 L over the 14-d period and might range between 5.9 L and 6.3 L.d(-1). Conclusions: This information will provide a guide to the energy requirements of ultra-endurance running and enable athletes, nutritionists, and coaches to optimize performance without compromising the health of the participant.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

This study utilized recently developed microbead technology to remove natural killer (NK) cells from peripheral blood mononuclear cell (PBMC) preparations to determine the effect of acute exercise on T-lymphocyte function, independent of changes in lymphocyte subpopulations. Twelve well-trained male runners completed a 60-min exercise trial at 95% ventilatory threshold and a no-exercise control trial. Six blood samples were taken at each session: before exercise, midexercise, immediately after exercise, and 30, 60, and 90 min after exercise. Isolated PBMC and NK cell-depleted PBMC were stimulated with the mitogen phytohemagglutinin. Cellular proliferation was assessed by using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide dye uptake. In the PBMC cultures, there was a significantly lower mitogen response to phytohemagglutinin in exercise compared with the control condition immediately postexercise. There were no significant differences between the control and exercise conditions in NK cell-depleted PBMC cultures or in the responses adjusted for the percentage of CD3 cells. The present findings do not support the view that T-lymphocyte function is reduced after exercise.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The present study examined the effect of carbohydrate supplementation on changes in neutrophil counts, and the plasma concentrations of cortisol and myoglobin after intense exercise. Eight well-trained male runners ran on a treadmill for 1 h at 85% maximal oxygen uptake on two separate occasions. In a double-blind cross-over design, subjects consumed either 750 ml of a 10% carbohydrate (CHO) drink or a placebo drink on each occasion. The order of the trials was counterbalanced. Blood was drawn immediately before and after exercise, and I h after exercise. Immediately after exercise, neutrophil counts (CHO, 49%; placebo, 65%; P < 0.05), plasma concentrations of glucose (CHO, 43%; P

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The purpose of this study was to compare the effects of exercise intensity and exercise-induced muscle damage on changes in anti-inflammatory cytokines and other inflammatory mediators. Nine well-trained male runners completed three different exercise trials on separate occasions: ( 1) level treadmill running at 60% VO2max (moderate-intensity trial) for 60 min; (2) level treadmill running at 85% VO2max (high-intensity trial) for 60 min; (3) downhill treadmill running ( - 10% gradient) at 60% VO2 max (downhill running trial) for 45 min. Blood was sampled before, immediately after and 1 h after exercise. Plasma was analyzed for interleukin-1 receptor antagonist (IL-1ra), IL-4, IL-5, IL-10, IL-12p40, IL-13, monocyte chemotactic protein-1 (MCP-1), prostaglandin E-2, leukotriene B-4 and heat shock protein 70 (HSP70). The plasma concentrations of IL-1ra, IL-12p40, MCP-1 and HSP70 increased significantly (P< 0.05) after all three trials. Plasma prostaglandin E-2 concentration increased significantly after the downhill running and high-intensity trials, while plasma IL-10 concentration increased significantly only after the high-intensity trial. IL-4 and leukotriene B4 did not increase significantly after exercise. Plasma IL-1ra and IL-10 concentrations were significantly higher ( P< 0.05) after the high-intensity trial than after both the moderate-intensity and downhill running trials. Therefore, following exercise up to 1 h duration, exercise intensity appears to have a greater effect on anti-inflammatory cytokine production than exercise-induced muscle damage.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This prospective study evaluated the effect of an individualized, comprehensive, home-based cardiac rehabilitation program combining exercise training with risk factor modification and psychosocial counseling on risk factors, psychological wellbeing, functional capacity, and work resumption in 99 post-percutaneous coronary interventions (PCI) patients randomized to control (standard care plus telephone follow-up, n = 49) or intervention (individualized, comprehensive, home-based cardiac rehabilitation, n = 50) groups. Data were collected at time 1 (T-1) during hospital admission, time 2 (T-2) approximately 2 months post-PCI, and time 3 (T-3) approximately 12 months post-PCI. Results suggest that the allocation to an individualized, comprehensive, home-based cardiac rehabilitation program provided more advantageous outcomes. At both follow-ups, the intervention group showed within-group improvement in serum cholesterol levels (P < 0.02; P < 0.01) and exercise participation (P < 0.001; P < 0.001) with differences in exercise participation favoring the intervention group (P < 0.01) at T-2 Repeated measures ANOVA showed significant improvements over time in body mass index (BMI) (P < 0.01), psychological well-being (P < 0.001), and functional capacity (P < 0.001) for both groups. More patients in the intervention group had returned to work at T-2 (P < 0.001) and did so more quickly (P < 0.01). These findings suggest that an individualized, comprehensive, home-based cardiac rehabilitation program improves risk factor profiles and work resumption patterns for patients following PCI. (C) 2001 Elsevier Science Ireland Ltd. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Radical-mediated oxidative damage of skeletal muscle membranes has been implicated in the fatigue process. Vitamin E (VE) is a major chain breaking antioxidant that has been shown to reduce contraction-mediated oxidative damage. We hypothesized that VE deficiency would adversely affect Muscle contractile function, resulting in a more rapid development of muscular fatigue during exercise. To test this postulate, rats were fed either a VE-deficient (EDEF) diet or a control (CON) diet containing VE. Following a 12-week feeding period, animals were anesthetized and mechanically ventilated. Muscle endurance (fatigue) and contractile properties were evaluated using an in situ preparation of the tibialis anterior (TA) muscle. Contractile properties of the TA muscle were determined before and after a fatigue protocol. The muscle fatigue protocol consisted of 60 min of repetitive contractions (250 ms trains at 15 Hz; duty cycle = I I %) of the TA muscle. Prior to the fatigue protocol, no significant differences existed in the force-frequency curves between EDEF and CON animals. At the completion of the fatigue protocol, muscular force production was significantly (P