75 resultados para ENERGY-PARTITIONING ANALYSIS
Resumo:
In a deregulated electricity market, optimizing dispatch capacity and transmission capacity are among the core concerns of market operators. Many market operators have capitalized on linear programming (LP) based methods to perform market dispatch operation in order to explore the computational efficiency of LP. In this paper, the search capability of genetic algorithms (GAs) is utilized to solve the market dispatch problem. The GA model is able to solve pool based capacity dispatch, while optimizing the interconnector transmission capacity. Case studies and corresponding analyses are performed to demonstrate the efficiency of the GA model.
Resumo:
Non-technical losses (NTL) identification and prediction are important tasks for many utilities. Data from customer information system (CIS) can be used for NTL analysis. However, in order to accurately and efficiently perform NTL analysis, the original data from CIS need to be pre-processed before any detailed NTL analysis can be carried out. In this paper, we propose a feature selection based method for CIS data pre-processing in order to extract the most relevant information for further analysis such as clustering and classifications. By removing irrelevant and redundant features, feature selection is an essential step in data mining process in finding optimal subset of features to improve the quality of result by giving faster time processing, higher accuracy and simpler results with fewer features. Detailed feature selection analysis is presented in the paper. Both time-domain and load shape data are compared based on the accuracy, consistency and statistical dependencies between features.
Resumo:
This paper presents load profiles of electricity customers, using the knowledge discovery in databases (KDD) procedure, a data mining technique, to determine the load profiles for different types of customers. In this paper, the current load profiling methods are compared using data mining techniques, by analysing and evaluating these classification techniques. The objective of this study is to determine the best load profiling methods and data mining techniques to classify, detect and predict non-technical losses in the distribution sector, due to faulty metering and billing errors, as well as to gather knowledge on customer behaviour and preferences so as to gain a competitive advantage in the deregulated market. This paper focuses mainly on the comparative analysis of the classification techniques selected; a forthcoming paper will focus on the detection and prediction methods.
Resumo:
In deregulated electricity market, modeling and forecasting the spot price present a number of challenges. By applying wavelet and support vector machine techniques, a new time series model for short term electricity price forecasting has been developed in this paper. The model employs both historical price and other important information, such as load capacity and weather (temperature), to forecast the price of one or more time steps ahead. The developed model has been evaluated with the actual data from Australian National Electricity Market. The simulation results demonstrated that the forecast model is capable of forecasting the electricity price with a reasonable forecasting accuracy.