99 resultados para ENERGY COMPONENT


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The kinetics of mechanical alloying have been investigated by examining the effect that ball mass has on the rate at which titanium carbide forms from the elements. By varying the ball density while keeping the ball diameter and the charge ratio constant, the collision energy was independently controlled. Grinding media with a density from 3.8 g cm(-3) (agate) to 16.4 g cm(-3) (tungsten carbide) were used. The reaction rate increases exponentially with ball mass until a critical level is reached, which is determined by the induced temperature rise. Above this level, collisions of higher energy have no advantage. It is also shown that the reaction rate increases exponentially with the rate at which strain accumulates in the reactants. It is suggested that the strain accumulation rate in mechanically induced reactions is analogous to temperature in thermally induced chemical reactions.

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Over the past years, component-based software engineering has become an established paradigm in the area of complex software intensive systems. However, many techniques for analyzing these systems for critical properties currently do not make use of the component orientation. In particular, safety analysis of component-based systems is an open field of research. In this chapter we investigate the problems arising and define a set of requirements that apply when adapting the analysis of safety properties to a component-based software engineering process. Based on these requirements some important component-oriented safety evaluation approaches are examined and compared.

Relevância:

20.00% 20.00%

Publicador: