99 resultados para ECCENTRIC CONTRACTION


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Small-angle neutron scattering measurements on a series of monodisperse linear entangled polystyrene melts in nonlinear flow through an abrupt 4:1 contraction have been made. Clear signatures of melt deformation and subsequent relaxation can be observed in the scattering patterns, which were taken along the centerline. These data are compared with the predictions of a recently derived molecular theory. Two levels of molecular theory are used: a detailed equation describing the evolution of molecular structure over all length scales relevant to the scattering data and a simplified version of the model, which is suitable for finite element computations. The velocity field for the complex melt flow is computed using the simplified model and scattering predictions are made by feeding these flow histories into the detailed model. The modeling quantitatively captures the full scattering intensity patterns over a broad range of data with independent variation of position within the contraction geometry, bulk flow rate and melt molecular weight. The study provides a strong, quantitative validation of current theoretical ideas concerning the microscopic dynamics of entangled polymers which builds upon existing comparisons with nonlinear mechanical stress data. Furthermore, we are able to confirm the appreciable length scale dependence of relaxation in polymer melts and highlight some wider implications of this phenomenon.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Rhythmic movements brought about by the contraction of muscles on one side of the body give rise to phase-locked changes in the excitability of the homologous motor pathways of the opposite limb. Such crossed facilitation should favour patterns of bimanual coordination in which homologous muscles are engaged simultaneously, and disrupt those in which the muscles are activated in an alternating fashion. In order to examine these issues, we obtained responses to transcranial magnetic stimulation (TMS), to stimulation of the cervicomedullary junction (cervicomedullary-evoked potentials, CMEPs), to peripheral nerve stimulation (H-reflexes and f-waves), and elicited stretch reflexes in the relaxed right flexor carpi radialis (FCR) muscle during rhythmic (2 Hz) flexion and extension movements of the opposite (left) wrist. The potentials evoked by TMS in right FCR were potentiated during the phases of movement in which the left FCR was most strongly engaged. In contrast, CMEPs were unaffected by the movements of the opposite limb. These results suggest that there was systematic variation of the excitability of the motor cortex ipsilateral to the moving limb. H-reflexes and stretch reflexes recorded in right FCR were modulated in phase with the activation of left FCR. As the f-waves did not vary in corresponding fashion, it appears that the phasic modulation of the H-reflex was mediated by presynaptic inhibition of Ia afferents. The observation that both H-reflexes and f-waves were depressed markedly during movements of the opposite indicates that there may also have been postsynaptic inhibition or disfacilitation of the largest motor units. Our findings indicate that the patterned modulation of excitability in motor pathways that occurs during rhythmic movements of the opposite limb is mediated primarily by interhemispheric interactions between cortical motor areas.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Although it has long been supposed that resistance training causes adaptive changes in the CNS, the sites and nature of these adaptations have not previously been identified. In order to determine whether the neural adaptations to resistance training occur to a greater extent at cortical or subcortical sites in the CNS, we compared the effects of resistance training on the electromyographic (EMG) responses to transcranial magnetic (TMS) and electrical (TES) stimulation. Motor evoked potentials (MEPs) were recorded from the first dorsal interosseous muscle of 16 individuals before and after 4 weeks of resistance training for the index finger abductors (n = 8), or training involving finger abduction-adduction without external resistance (n = 8). TMS was delivered at rest at intensities from 5 % below the passive threshold to the maximal output of the stimulator. TMS and TES were also delivered at the active threshold intensity while the participants exerted torques ranging from 5 to 60 % of their maximum voluntary contraction (MVC) torque. The average latency of MEPs elicited by TES was significantly shorter than that of TMS MEPs (TES latency = 21.5 ± 1.4 ms; TMS latency = 23.4 ± 1.4 ms; P < 0.05), which indicates that the site of activation differed between the two forms of stimulation. Training resulted in a significant increase in MVC torque for the resistance-training group, but not the control group. There were no statistically significant changes in the corticospinal properties measured at rest for either group. For the active trials involving both TMS and TES, however, the slope of the relationship between MEP size and the torque exerted was significantly lower after training for the resistance-training group (P < 0.05). Thus, for a specific level of muscle activity, the magnitude of the EMG responses to both forms of transcranial stimulation were smaller following resistance training. These results suggest that resistance training changes the functional properties of spinal cord circuitry in humans, but does not substantially affect the organisation of the motor cortex.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Peptidergic mechanisms influencing the resistance of the gastrointestinal vascular bed of the estuarine crocodile, Crocodylus porosus, were investigated. The gut was perfused in situ via the mesenteric and the celiac arteries, and the effects of different neuropeptides were tested using bolus injections. Effects on vascular resistance were recorded as changes in inflow pressures. Peptides found in sensory neurons [substance P, neurokinin A, and calcitonin gene-related peptide (CGRP)] all caused significant relaxation of the celiac vascular bed, as did vasoactive intestinal polypeptide (VIP), another well-known vasodilator. Except for VIP, the peptides also induced transitory gut contractions. Somatostatin and neuropeptide Y (NPY), which coexist in adrenergic neurons of the C. porosus, induced vasoconstriction in the celiac vascular bed without affecting the gut motility. Galanin caused vasoconstriction and occasionally activated the gut wall. To elucidate direct effects on individual vessels, the different peptides were tested on isolated ring preparations of the mesenteric and celiac arteries. Only CGRP and VIP relaxed the epinephrine-precontracted celiac artery, whereas the effects on the mesenteric artery were variable. Somatostatin and NPY did not affect the resting tonus of these vessels, but somatostatin potentiated the epinephrine-induced contraction of the celiac artery. Immunohistochemistry revealed the existence and localization of the above-mentioned peptides in nerve fibers innervating vessels of different sizes in the gut region. These data support the hypothesis of an important role for neuropeptides in the control of the vascular bed of the gastrointestinal tract in C. porosus.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

To aid in the development of artificial diets for mass rearing parasitioids, we investigated the anatomical changes in the digestive tract during feeding behaviour of larval Trichogramma australicum (Hymenoptera: Trichogrammatidae). Larvae begin to feed immediately upon eclosion and feed continuously for 4 h until replete. Feeding is characterised by rhythmic muscle contractions (ca 1 per s) of the pharynx. Contractions of the pharyngeal dilator muscles lift the roof of the lobe-shaped pharynx away from the floor of the chamber, opening the mouth and pumping food into the pharyngeal cavity. Another muscle contraction occurs about 0.5 s later, forcing the bolus of food through the oesophagus and into the midgut. The junction of fore- and midgut is marked by a cardiac valve. The midgut occupies most of the body cavity and is lined with highly vacuolated, flattened cells and a dispersed layer of muscle cells. In the centre of the midgut, food has the appearance of host egg contents. Food near the midgut epithelial cells has a finer, more homogeneous appearance. This change in the physical properties of the gut contents is indicative of the digestion process. In the prepupa, where digestion is complete, the entire gut contents have this appearance. After eclosion, the vitelline membrane remains attached to the posterior end of the larva. We believe this attachment to be adaptive in two ways: (1) to anchor the larva against the movements of its anterior portion, thereby increasing the efficiency of foraging within the egg, and (2) to prevent a free-floating membrane from clogging the mouthparts during ingestion. 1998 Elsevier Science Ltd. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

1 Voltage-operated calcium channel (VOCC) antagonists are effective antihypertensive and antianginal agents but they also depress myocardial contractility. 2 We compared four L-type calcium channel antagonists, felodipine, nifedipine, amlodipine and verapamil and a relatively T-type selective calcium channel antagonist, mibefradil, on human and rat isolated tissue assays to determine their functional vascular to cardiac tissue selectivity (V/C) ratio. 3 The V/C ratio was calculated as the ratio of the IC50 value of the antagonist that reduced (by 50%) submaximally contracted (K+ 62 mM) human small arteries from the aortic vasa vasorum (vascular, V) mounted in a myograph and the IC50 value of the antagonist that reduced (-)-isoprenaline (6 nM) submaximally stimulated human right atrial trabeculae muscle (cardiac, C) mounted in organ chambers. 4 The average pIC(50) Values (-log IC50 M) for the human vascular preparations were felodipine 8.30, nifedipine 7.78, amlodipine 6.64, verapamil 6.26 and mibefradil 6.22. The average pIC(50) values for the cardiac muscle were felodipine 7.21, nifedipine 6.95, verapamil 6.91, amlodipine 5.94, and mibefradil 4.61. 5 The V/C ratio calculated as antilog [pIC(50)V-pIC(50)C] is thus mibefradil 41, felodipine 12, nifedipine 7, amlodipine 5 and verapamil 0.2. 6 In rat small mesenteric arteries the pIC(50) values for the five drugs were similar to the values for human vasa vasorum arteries contracted by K+ 62 mM. However for methoxamine (10 mu M) contraction in the rat arteries the pIC(50) values were lower for felodipine 7.24 and nifedipine 6.23, but similar for verapamil 6.13, amlodipine 6.28 and mibefradil 5.91. 7 In conclusion in the human tissue assays, the putative T-channel antagonist mibefradil shows the highest vascular to cardiac selectivity ratio; some 3 fold higher than the dihydropyridine, felodipine, and some 200 fold more vascular selective than the phenylalkylamine, verapamil. This favourable vascular to cardiac selectivity for mibefradil, from a new chemical class of VOCC antagonist, may be explained by its putative T-channel selectivity.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Evaluation of trunk movements, trunk muscle activation, intra-abdominal pressure and displacement of centres of pressure and mass was undertaken to determine whether trunk orientation is a controlled variable prior to and during rapid bilateral movement of the upper limbs. Standing subjects performed rapid bilateral symmetrical upper limb movements in three directions (flexion, abduction and extension). The results indicated a small (0.4-3.3 degrees) but consistent initial angular displacement between the segments of the trunk in a direction opposite to that produced by the reactive moments resulting from limb movement. Phasic activation of superficial trunk muscles was consistent with this pattern of preparatory motion and with the direction of motion of the centre of mass. In contrast, activation of the deep abdominal muscles was independent of the direction of limb motion, suggesting a non-direction specific contribution to spinal stability. The results support the opinion that feedforward postural responses result in trunk movements, and that orientation of the trunk and centre of mass are both controlled variables in relation to rapid limb movements.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

There has been considerable interest in the literature regarding the function of transversus abdominis, the deepest of the abdominal muscles, and the clinical approach to training this muscle. With the development of techniques for the investigation of this muscle involving the insertion of fine-wire electromyographic electrodes under the guidance of ultrasound imaging it has been possible to test the hypotheses related to its normal function and function in people with low back pain. The purpose of this review is to provide an appraisal of the current evidence for the role of transversus abdominis in spinal stability, to develop a model of how the contribution of this muscle differs from the other abdominal muscles and to interpret these findings in terms of the consequences of changes in this function.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

1. The co-ordination between respiratory and postural functions of the diaphragm was investigated during repetitive upper Limb movement. It was hypothesised that diaphragm activity would occur either tonically or phasically in association with the forces from each movement and that this activity would combine with phasic respiratory activity. 2. Movements of the upper limb and ribcage were measured while standing subjects performed repetitive upper limb movements 'as fast as possible'. Electromyographic (EMG) recordings of the costal diaphragm were made using intramuscular electrodes in four subjects. Surface electrodes were placed over the deltoid and erector spinae muscles. 3. In contrast to standing at rest, diaphragm activity was present throughout expiration at 78 +/- 17% (mean +/- S.D.) of its peak inspiratory magnitude during repeated upper limb movement. 4. Bursts of deltoid and erector spinae EMG activity occurred at the Limb movement frequency (similar to 2.9 Hz). Although the majority of diaphragm EMG power was at the respiratory frequency (similar to 0.4 Hz), a peak was also present at the movement frequency. This finding was corroborated by averaged EMG activity triggered from upper limb movement. In addition, diaphragm EMG activity was coherent with ribcage motion at the respiratory frequency and with upper limb movement at the movement frequency. 5. The diaphragm response was similar when movement was performed while sitting. In addition, when subjects moved with increasing frequency the peak upper limb acceleration correlated with diaphragm EMG amplitude. These findings support the argument that diaphragm contraction is related to trunk control. 6. The results indicate that activity of human phrenic motoneurones is organised such that it contributes to both posture and respiration during a task which repetitively challenges trunk posture.