85 resultados para Dust Flame Acceleration


Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this work, we give a description of the process of teleportation between Alice in an inertial frame, and Rob who is in uniform acceleration with respect to Alice. The fidelity of the teleportation is reduced due to Davies-Unruh radiation in Rob's frame. In so far as teleportation is a measure of entanglement, our results suggest that quantum entanglement is degraded in noninertial frames.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A sensitive near-resonant four-wave mixing technique based on two-photon parametric four-wave mixing has been developed. Seeded parametric four-wave mixing requires only a single laser as an additional phase matched seeder field is generated via parametric four-wave mixing of the pump beam in a high gain cell. The seeder field travels collinearly with the pump beam providing efficient nondegenerate four-wave mixing in a second medium. This simple arrangement facilitates the detection of complex molecular spectra by simply scanning the pump laser. Seeded parametric four-wave mixing is demonstrated in both a low pressure cell and an air/acetylene flame with detection of the two-photon C (2) Pi(upsilon'=0)<--X (2) Pi(upsilon =0) spectrum of nitric oxide. From the cell data a detection limit of 10(12) molecules/cm(3) is established. A theoretical model of seeded parametric four-wave mixing is developed from existing parametric four-wave mixing theory. The addition of the seeder field significantly modifies the parametric four-wave mixing behaviour such that in the small signal regime, the signal intensity can readily be made to scale as the cube of the laser pump power while the density dependence follows a more familiar square law dependence, In general, we find excellent agreement between theory and experiment. Limitations to the process result from an ac Stark shift of the two-photon resonance in the high pressure seeder cell caused by the generation of a strong seeder field, as well as a reduction in phase matching efficiency due to the presence of certain buffer species. Various optimizations are suggested which should overcome these limitations, providing even greater detection sensitivity. (C) 1998 American Institute of Physics, [S0021-9606(98)01014-9].

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The tensions produced in the wall of a rigid, thin-walled, liquid-filled sphere as it moves with an axisymmetric straining flow are examined. This problem has not been previously addressed. A generalised correlation for the maximum wall tension, expressed in dimensionless form as a Weber number (We), is developed in terms of the acceleration number (Ac) and Reynolds number (Re) of the straining flow. At low Reynolds number We is dominated by viscous forces, while inertial forces due to internal pressure gradients caused by sphere acceleration dominate at higher Re. The generalised correlation has been used to examine the case of a typical yeast cell (a thin-walled, liquid-filled sphere) passing through a typical high-pressure homogeniser (a straining-flow device). At 56 MPa homogenising pressure, a 6 mu m yeast cell experiences tensions in the inertially dominated regime (Re = 100). The correlation gives We = 0.206, corresponding to a maximum wall tension of 8 Nm(-1). This is equivalent to an applied compressive force of 150 mu N and compares favourably with the force required to break yeast cells under compressive micromanipulation (40-90 mu N). Inertial forces may therefore be an important and previously unrecognised. mechanism of microbial cell disruption during high-pressure homogenisation. Further work is required to examine the likelihood of cell deformation in the high-strain-rate short-residence-time environment of the homogeniser, and the effect that such deformation may have on the contribution of inertial forces to disruption. (C) 1998 Published by Elsevier Science Ltd. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This study examined the relationship between isokinetic hip extensor/hip flexor strength, 1-RM squat strength, and sprint running performance for both a sprint-trained and non-sprint-trained group. Eleven male sprinters and 8 male controls volunteered for the study. On the same day subjects ran 20-m sprints from both a stationary start and with a 50-m acceleration distance, completed isokinetic hip extension/flexion exercises at 1.05, 4.74, and 8.42 rad.s(-1), and had their squat strength estimated. Stepwise multiple regression analysis showed that equations for predicting both 20-m maximum velocity nm time and 20-m acceleration time may be calculated with an error of less than 0.05 sec using only isokinetic and squat strength data. However, a single regression equation for predicting both 20-m acceleration and maximum velocity run times from isokinetic or squat tests was not found. The regression analysis indicated that hip flexor strength at all test velocities was a better predictor of sprint running performance than hip extensor strength.