114 resultados para Drug Screen
Resumo:
The role of catecholamines in the control of the GnRH pulse generator is unclear as studies have relied on the use of peripheral or intracerebroventricular injections, which lack specificity in relation to the anatomical site of action. Direct brain site infusions have been used, however, these are limited by the ability to accurately target small brain regions. One such area of interest in the control of GnRH is the median eminence and arcuate nucleus within the medial basal hypothalamus. Here we describe a method of stereotaxically targeting this area in a large animal (sheep) and an infusion system to deliver drugs into unrestrained conscious animals. To test our technique we infused the dopamine agonist, quinpirole or vehicle into the medial basal hypothalamus of ovariectomised ewes. Quinpirole significantly suppressed LH pulsatility only in animals with injectors located close to the lateral median eminence. This in vivo result supports the hypothesis that dopamine inhibits GnRH secretion by presynaptic inhibition in the lateral median eminence. Also infusion of quinpirole into the medial basal hypothalamus suppressed prolactin secretion providing in vivo evidence that is consistent with the hypothesis that there are stimulatory autoreceptors on tubero-infundibular dopamine neurons. (C) 1997 Elsevier Science B.V.
Resumo:
The dispersion model with mixed boundary conditions uses a single parameter, the dispersion number, to describe the hepatic elimination of xenobiotics and endogenous substances. An implicit a priori assumption of the model is that the transit time density of intravascular indicators is approximated by an inverse Gaussian distribution. This approximation is limited in that the model poorly describes the tail part of the hepatic outflow curves of vascular indicators. A sum of two inverse Gaussian functions is proposed as ail alternative, more flexible empirical model for transit time densities of vascular references. This model suggests that a more accurate description of the tail portion of vascular reference curves yields an elimination rate constant (or intrinsic clearance) which is 40% less than predicted by the dispersion model with mixed boundary conditions. The results emphasize the need to accurately describe outflow curves in using them as a basis for determining pharmacokinetic parameters using hepatic elimination models. (C) 1997 Society for Mathematical Biology.
Resumo:
1. Drug delivery through the skin has been used to target the epidermis, dermis and deeper tissues and for systemic delivery, The major barrier for the transport of drugs through the skin is the stratum corneum, with most transport occurring through the intercellular region, The polarity of the intercellular region appears to be similar to butanol, with the diffusion of solutes being hindered by saturable hydrogen bonding to the polar head groups of the ceramides, fatty acids and other intercellular lipids, Accordingly, the permeability of the more lipophilic solutes is greatest from aqueous solutions, whereas polar solute permeability is favoured by hydrocarbon-based vehicles. 2. The skin is capable of metabolizing many substances and, through its microvasculature, limits the transport of most substances into regions below the dermis. 3. Although the flux of solutes through the skin should be identical for different vehicles when the solute exists as a saturated solution, the fluxes vary in accordance with the skin penetration enhancement properties of the vehicle. It is therefore desirable that the regulatory standards required for the bioequivalence of topical products include skin studies. 4. Deep tissue penetration can be related to solute protein binding, solute molecular size and dermal blood flow. 5. Iontophoresis is a promising area of skin drug delivery, especially for ionized solutes and when a rapid effect is required. 6. In general, psoriasis and other skin diseases facilitate drug delivery through the skin. 7. It is concluded that the variability in skin permeability remains an obstacle in optimizing drug delivery by this route.
Resumo:
The mortality and morbidity caused by alcohol, tobacco and illicit drug misuse represents a significant public health burden (Ezzati et al., 2002). A key part of the public health response is the collection of epidemiological and social science data to define at-risk populations to identify opportunities for intervention and to evaluate the effectiveness of policies in preventing or treating drug misuse and drug-related harm. The systematic use of epidemiological and social science research methods to study illicit drug use is barely 40 years old in the United States and United Kingdom, which have pioneered this approach. Because of the sensitive nature of epidemiological research on illicit drug use a unique set of ethical challenges need to be explicitly addressed by the field. Although ethics guidelines have been proposed (Council for International Organizations of Medical Sciences, 1991), scholarship on the ethics of epidemiology is scant, and consensus on core values not yet achieved (Coughlin, 2000).