59 resultados para Distance Matrix
Resumo:
Background: Periodontal wound healing and regeneration require that new matrix be synthesized, creating an environment into which cells can migrate. One agent which has been described as promoting periodontal regeneration is an enamel matrix protein derivative (EMD). Since no specific growth factors have been identified in EMD preparations, it is postulated that EMD acts as a matrix enhancement factor. This study was designed to investigate the effect of EMD in vitro on matrix synthesis by cultured periodontal fibroblasts. Methods: The matrix response of the cells was evaluated by determination of the total proteoglycan synthesis, glycosaminoglycan profile, and hyaluronan synthesis by the uptake of radiolabeled precursors. The response of the individual proteoglycans, versican, decorin, and biglycan were examined at the mRNA level by Northern blot analysis. Hyaluronan synthesis was probed by identifying the isotypes of hyaluronan synthase (HAS) expressed in periodontal fibroblasts as HAS-2 and HAS-3 and the effect of EMD on the levels of mRNA for each enzyme was monitored by reverse transcription polymerase chain reaction (RTPCR). Comparisons were made between gingival fibroblast (GF) cells and periodontal ligament (PDLF) cells. Results: EMD was found to significantly affect the synthesis of the mRNAs for the matrix proteoglycans versican, biglycan, and decorin, producing a response similar to, but potentially greater than, mitogenic cytokines. EMD also stimulated hyaluronan synthesis in both GF and PDLF cells. Although mRNA for HAS-2 was elevated in GF after exposure to EMD, the PDLF did not show a similar response. Therefore, the point at which the stimulation of hyaluronan becomes effective may not be at the level of stimulation of the mRNA for hyaluronan synthase, but, rather, at a later point in the pathway of regulation of hyaluronan synthesis. In all cases, GF cells appeared to be more responsive to EMD than PDLF cells in vitro. Conclusions: EMD has the potential to significantly modulate matrix synthesis in a manner consistent with early regenerative events.
Resumo:
Background: Oral lichen planus (OLP) is characterized by a subepithelial lymphocytic infiltrate, basement membrane (BM) disruption, intra-epithelial T-cell migration and apoptosis of basal keratinocytes. BM damage and T-cell migration in OLP may be mediated by matrix metalloproteinases (MMPs). Methods: We examined the distribution, activation and cellular sources of MMPs and their inhibitors (TIMPs) in OLP using immunohistochemistry, ELISA, RT-PCR and zymography. Results: MMP-2 and -3 were present in the epithelium while MMP-9 was associated with the inflammatory infiltrate. MMP-9 and TIMP-1 secretion by OLP lesional T cells was greater than OLP patient (p
Resumo:
When visual information is confined to one object plane, the emmetropization end-point is adjusted in accord with the corresponding incident optical vergence at the eye [Proceedings of the 7th International Conference on Myopia (2000) 113]. We now report the effect of adding extra visual information beyond the target plane. Visual conditions were controlled using a cone-lens system: black Maltese cross targets on white opaque backgrounds (OMX) were attached to the open faces of 2.5 cm translucent cones fitted with either 0, +25 or +40 D imaging lenses. An alternative target (TMX) was made by substituting the opaque target background for a transparent background, which allowed access to visual information beyond the target plane. The imaging devices were applied to 7-day-old chicks and worn for 4 days. Prior to this treatment, on day 2, some chicks underwent ciliary nerve section (CNS) to preclude accommodation. All treatments were monocular. Refractive errors and axial ocular dimensions were measured using retinoscopy and A-scan ultrasonography under halothane anesthesia. Treatment effects were specified as mean ( +/-S.D.) interocular differences. Eyes with the OMX/ + 40 D lens combination remained emmetropic ( +0.73 +/-3.57 D), consistent with the target plane being approximately conjugate with the retina. Switching to the TMX caused a hyperopic shift in refractive error ( + 3.78 +/- 3.41 D). This relative shift towards hyperopia in switching from the OMX to the TMX target also occurred for the other two lens powers. Thus, the OMX/ + 25 D lens induced myopia ( - 7.00 +/-5.88 D), corresponding to the imposed hyperopic defocus (target plane now imaged behind the retina), and switching to the TMX resulted in a reduction in myopia (-1.73 +/-5.36 D), The OMX/0 D lens combination produced the largest myopic shift, and here, switching to the TMX condition almost eliminated the myopic response (-15.50 +/-6.62 D cf. -0.56 +/-1.24 D). This relative hyperopic shift associated with switching from the OMX to the TMX target was eliminated by CNS surgery. Thus, the two CNS/TMX groups were both more myopic than the equivalent no CNS/TMX groups ( + 40 D lens: -2.66 +/-2.34 D; +25 D lens: -7.97 +/-6.87 D). When the visual information is restricted to one plane, incident optical vergence appears to direct emmetropization. Adding Visual information at other distances produces a shift in the end-point of ernmetropization in the direction of the added information. That these effects are dependent on the integrity of the accommodation system implies that accommodation plays a role in emmetropization and represents the first reported evidence of this kind. Published by Elsevier Science Ltd.
Resumo:
In population pharmacokinetic studies, the precision of parameter estimates is dependent on the population design. Methods based on the Fisher information matrix have been developed and extended to population studies to evaluate and optimize designs. In this paper we propose simple programming tools to evaluate population pharmacokinetic designs. This involved the development of an expression for the Fisher information matrix for nonlinear mixed-effects models, including estimation of the variance of the residual error. We implemented this expression as a generic function for two software applications: S-PLUS and MATLAB. The evaluation of population designs based on two pharmacokinetic examples from the literature is shown to illustrate the efficiency and the simplicity of this theoretic approach. Although no optimization method of the design is provided, these functions can be used to select and compare population designs among a large set of possible designs, avoiding a lot of simulations.
Resumo:
Purpose: The phenotype of vascular smooth muscle cells (SMCs) is altered in several arterial pathologies, including the neointima formed after acute arterial injury. This study examined the time course of this phenotypic change in relation to changes in the amount and distribution of matrix glycosaminoglycans. Methods: The immunochemical staining of heparan sulphates (HS) and chondroitin sulphates (CS) in the extracellular matrix of the arterial wall was examined at early points after balloon catheter injury of the rabbit carotid artery. SMC phenotype was assessed by means of ultrastructural morphometry of the cytoplasmic volume fraction of myofilaments. The proportions of cell and matrix components in the media were analyzed with similar morphometric techniques. Results: HS and CS were shown in close association with SMCs of the uninjured arterial media as well as being more widespread within the matrix. Within 6 hours after arterial injury, there was loss of the regular pericellular distribution of both HS and CS, which was associated with a significant expansion in the extracellular space. This preceded the change in ultrastructural phenotype of the SMCs. The glycosaminoglycan loss was most exaggerated at 4 days, after which time the HS and CS reappeared around the medial SMCs. SMCs of the recovering media were able to rapidly replace their glycosaminoglycans, whereas SMCs of the developing neointima failed to produce HS as readily as they produced CS. Conclusions: These studies indicate that changes in glycosaminoglycans of the extracellular matrix precede changes in SMC phenotype after acute arterial injury. In the recovering arterial media, SMCs replace their matrix glycosaminoglycans rapidly, whereas the newly established neointima fails to produce similar amounts of heparan sulphates.
Resumo:
We develop a new iterative filter diagonalization (FD) scheme based on Lanczos subspaces and demonstrate its application to the calculation of bound-state and resonance eigenvalues. The new scheme combines the Lanczos three-term vector recursion for the generation of a tridiagonal representation of the Hamiltonian with a three-term scalar recursion to generate filtered states within the Lanczos representation. Eigenstates in the energy windows of interest can then be obtained by solving a small generalized eigenvalue problem in the subspace spanned by the filtered states. The scalar filtering recursion is based on the homogeneous eigenvalue equation of the tridiagonal representation of the Hamiltonian, and is simpler and more efficient than our previous quasi-minimum-residual filter diagonalization (QMRFD) scheme (H. G. Yu and S. C. Smith, Chem. Phys. Lett., 1998, 283, 69), which was based on solving for the action of the Green operator via an inhomogeneous equation. A low-storage method for the construction of Hamiltonian and overlap matrix elements in the filtered-basis representation is devised, in which contributions to the matrix elements are computed simultaneously as the recursion proceeds, allowing coefficients of the filtered states to be discarded once their contribution has been evaluated. Application to the HO2 system shows that the new scheme is highly efficient and can generate eigenvalues with the same numerical accuracy as the basic Lanczos algorithm.
Resumo:
A scheme is presented to incorporate a mixed potential integral equation (MPIE) using Michalski's formulation C with the method of moments (MoM) for analyzing the scattering of a plane wave from conducting planar objects buried in a dielectric half-space. The robust complex image method with a two-level approximation is used for the calculation of the Green's functions for the half-space. To further speed up the computation, an interpolation technique for filling the matrix is employed. While the induced current distributions on the object's surface are obtained in the frequency domain, the corresponding time domain responses are calculated via the inverse fast Fourier transform (FFT), The complex natural resonances of targets are then extracted from the late time response using the generalized pencil-of-function (GPOF) method. We investigate the pole trajectories as we vary the distance between strips and the depth and orientation of single, buried strips, The variation from the pole position of a single strip in a homogeneous dielectric medium was only a few percent for most of these parameter variations.
Resumo:
The ramosus (rms) mutation (rms1) of pea (Pisum sativum) causes increased branching through modification of graft-transmissible signal(s) produced in rootstock and shoot. Additional grafting techniques have led us to propose that the novel signal regulated by Rms1 moves acropetally in shoots and acts as a branching inhibitor. Epicotyl interstock grafts showed that wild-type (WT) epicotyls grafted between rms1 scions and rootstocks can revert mutant scions to a WT non-branching phenotype. Mutant scions grafted together with mutant and WT rootstocks did not branch despite a contiguous mutant root-shoot system. The primary action of Rms1 is, therefore, unlikely to be to block transport of a branching stimulus from root to shoot. Rather, Rms1 may influence a long-distance signal that functions, directly or indirectly, as a branching inhibitor. It can be deduced that this signal moves acropetally in shoots because WT rootstocks inhibit branching in rms1 shoots, and although WT scions do not branch when grafted to mutant rootstocks, they do not inhibit branching in rms1 cotyledonary shoots growing from the same rootstocks. The acropetal direction of transport of the Rms1 signal supports previous evidence that the rms1 lesion is not in an auxin biosynthesis or transport pathway. The different branching phenotypes of WT and rms1 shoots growing from the same rms1 rootstock provides further evidence that the shoot has a major role in the regulation of branching and, moreover, that root-exported cytokinin is not the only graft-transmissible signal regulating branching in intact pea plants.
Resumo:
New Zealand is generally thought to have been physically isolated from the rest of the world for over 60 million years. But physical isolation may not mean biotic isolation, at least on the time scale of millions of years. Are New Zealand's present complement of plants the direct descendants of what originally rafted from Gondwana? Or has there been total extinction of this initial flora with replacement through long-distance dispersal (a complete biotic turnover)? These are two possible extremes which have come under recent discussion. Can the fossil record be used to decide the relative importance of the two endpoints, or is it simply too incomplete and too dependent on factors of chance? This paper suggests two approaches to the problem-the use of statistics to apply levels of confidence to first appearances in the fossil record and the analysis of trends based on the entire palynorecord. Statistics can suggest that the first appearance of a taxon was after New Zealand broke away from Gondwana-as long as the first appearance in the record was not due to an increase in biomass from an initially rare state. Two observations can be drawn from the overall palynorecord that are independent of changes in biomass: (1) The first appearance of palynotaxa common to both Australia and New Zealand is decidedly non-random. Most taxa occur first in Australia. This suggests a bias in air or water transport from west to east. (2) The percentage of endemic palynospecies in New Zealand shows no simple correlation with the time New Zealand drifted into isolation. The conifer macrorecord also hints at complete turnover since the Cretaceous.
Resumo:
A series of metal-matrix composites were formed by extrusion freeform, fabrication of a sinterable aluminum alloy in combination with silicon carbide particles and whiskers, carbon fibers, alumina particles, and hollow flyash cenospheres. Silicon carbide particles were most successful in that the composites retained high density with up to 20 vol% of reinforcement and the strength approximately doubles over the strength of the metal matrix alone. Comparison with simple models suggests that this unexpectedly high degree of reinforcement can be attributed to the concentration of small silicon carbide particles around the larger metal powder. This fabrication method also allows composites to be formed with hollow spheres that cannot be formed by other powder or melt methods.
Resumo:
Loblolly pine ( Pinus taeda L.) seeds from sources with a mild climate under maritime influence (North Carolina) required shorter moist chilling to achieve maximum germination vigor than seeds from sources with a harsher continental climate (Oklahoma). Solid matrix priming (SMP) for 6 d achieved as much as 60 d of moist chilling to improve rapidity, synchrony and completeness of germination for three of the four families studied. SMP after moist chilling increased the rapidity, synchrony and completeness of germination. The benefit of SMP was greatest for non-stratified seeds and the benefit decreased with length of moist chilling. In general, delaying planting for one week after SMP had minor effects on germination when seeds were kept in the SMP matrix at 4 degreesC. Delayed planting after SMP can increase germination rapidity and synchrony of seeds that have received long moist chilling and reduce the benefit of SMP in non-moist-chilled seeds.